Part IV - Exercises

Jacada Studio for iSeries

A’aﬂio for iSeries

Information in this document is subject to change without notice and does not represent a
commitment on the part of Jacada. Jacada assumes no responsibility for any printing errors
that may appear in this document. No part of this manual may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying, recording,
or information storage and retrieval systems, for any purpose other than the purchaser's
personal use, without the prior written permission of Jacada.

Copyright © 1992-2002 Jacada, Ltd. All rights reserved.
iSeries is a registered trademark of International Business Machines Corporation.

All other trademarks are the properties of their respective holders.

Jacada Studio for iSeries
October 2002

4

Jacada Studio for iSeries

Tutorial Exercise Overview

This overview will introduce you to the main objectives of each of the exercises in this tutorial. You will then be introduced to the Jacada Studio
workflow and the development and runtime architecture models. You will be introduced to the files created by the development process and the
connection between the GUI and host development environments. This section acts as a stand-alone reference and glossary of Jacada Studio for
iSeries development terminology and exercise objectives. It is not necessary that you learn all of the information in this section by heart before
going on to do the exercises. Just remember that you can always use these pages as a reference, when you need to.

* Note : This status bar shows your position in the workflow of the tutorial exercises. It is very important that you do the exercises in this tutorial in the
order of their appearance in the status bar, in order for you to navigate through your runtime successfully.

You are here!

¥
: . Your First : Add / Edit . . .
Tutorial Exercise e Main Menu Add / Edit Project Work With
Overview IDK Walk-Through AEQL'?;;':" Exercise ?E?(z(r)girsc: Exercise Projects Exercise

TUTORIAL EXERCISE OBJECTIVES

In the beginning of each exercise, you will find a gray box with a bulleted list of exercise objectives. The following is list of the objectives for all
of the exercises in this tutorial.

IDK Walk-Through Objectives

+ To introduce the reader to the Jacada Studio for iSeries Interface Development Kit (IDK)
¢ To familiarize the reader with the basic structure and navigation of the IDK

+ To expose the reader to the fundamental components of the IDK including toolbars, palettes, and basic terminology

Your First Application Exercise Objectives
+ To introduce the reader to the development process workflow
* To familiarize the reader with the mechanics of constructing and executing of a very simple Studio for iSeries graphical program

+ To expose the reader to the wizard-driven design and deployment features and automated code generation capabilities of Jacada Studio

Main Menu Exercise Objectives

+ To provide an exercise that replicates the menu application window in the prepackaged iTutor application

+ To show one possible way to build a menu window and to explain how it works

* To introduce the reader to the power of pre-built, reusable graphical components

+ To explain the relationships between client-side graphical components and host-side navigation and process logic

+ Briefly examine host code to understand what was generated and what process logic must be added to complete the program

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Add/Edit Resource Exercise Objectives

To provide an exercise that replicates the Add/Edit Resource window in the pre-packaged iTutor application
To build a window in which new data can be Added or existing data can be retrieved and Updated
To examine dynamic GUI display alternatives to Indicator driven Display File behaviors
- Conditional runtime display driven by client events (based on program mode of Add or Update)
- Resource # show/hide depending on mode
- Update or Add button displayed depending on mode
Passing variable text display values from a host program
To gain an understanding of the relationship between fields and their graphical representations
To gain a better understanding of client-controlled application activity as an alternative to host-controlled application activity
- Data validation at the client or server instead of the host
Using a graphical link control to launch an external URL in a separate browser frame

Briefly examine the host code to understand what was generated and what process logic must be added to complete the program

Add/Edit Project Exercise Objectives

To provide an exercise that replicates the Add/Edit Project window in the pre-packaged iTutor application
To build a window in which new data can be Added or existing data can be retrieved and Updated
To examine dynamic GUI display alternatives to Indicator driven Display File behaviors
- Conditional runtime display driven by client events (based on program mode of Add or Update)
- Project # show/hide depending on mode
- Variable Text and behavior (Update or Add) of a single Action button displayed depending on mode
- Disabling an input capable field at the client based on program mode
Using methods to communicate the results of data validation performed at the host to the client

Using code extensions to add advanced GUI controls in XHTML (date control)

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Work With Projects Exercise Objectives

+ To provide an exercise that replicates the Work with Project window in the pre-packaged iTutor application

* To build a window that illustrates the graphical alternative to Subfile behavior through the use of a graphical table control

+ To provide a brief explanation on how to construct and manipulate a table within the IDK

+ To provide a capability to re-sequence or reload a table based on a Combobox selection of logical sort sequences

+ To show the use of previously used fields with new short-list representations and the difference in use within a table control

+ To expose the developer to the use of palette filters to improve usability of the IDK

+ To go through the process of creating a new field and assigning an appropriate representation to that field when it is added to the display

+ To add several lines of RPG code to implement one of the Jacada Studio table level APIs

+ To differentiate Jacada Studio for iSeries table processing from iSeries green-screen Subfile processing

* To explain the different runtime behaviors of record selection between the Java and XHTML clients

THE JACADA STUDIO WORKFLOW OVERVIEW

The Jacada Studio for iSeries general workflow is as follows:

In the IDK:

1. Create an Application

Create an application to contain your GUI windows.

2. Build the KnowledgeBase

Build the elements that will be reused throughout the application.

3. Create Subapplication Windows

Create GUI windows and assign Knowledgebase templates.

4. Design Subapplication Windows

Maodify the look and feel of your windows for enhanced usability and design.

5. Generate Runtime

On the iSeries:

6. Start Jacada Monitor

Compile GUI application. Create and transfer RPG shell programs and copybooks to host.

Monitor listens for connection requests from the Jacada Server, initiates new jobs, and delegates
sessions to those jobs.

7. Write Host Code

Add Program Logic to Auto-Generated shell program.

8. Compile Program and DDS PF

In the IDK:

9. Run Application

Compile RPG host program and the DDS physical file copybook.

Run your application with either a Java or HTML client.

4

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

THE JACADA STUDIO DEVELOPMENT ARCHITECTURE

The name of the application in which you will be doing your development on the PC is MYTUTOR The name of the Library in which you will
be doing your development on the host is MYTUTORIAL. The Jacada Studio Development architecture concept is as follows:

In the IDK:

1. GUI Development
Create GUI windows

2. Generate a Runtime
The Runtime Generation process creates:
RPG shell programs, Parameter List (PLIST) copybooks, File Specification copybooks and DDS physical files.

3. The Runtime Generation process also transfers files to the iSeries and places them in the appropriate libraries / objects.

Development PC iSeries
MYTUTOR MYTUTORIAL
DEVELOPMENT APPLICATION DEVELOPMENT LIBRARY

@ GUI Development

Create GUI windows

v

@ Generate Runtime

Compile application to create QRPGSRC
GUI clients.
RPG programs
Create and transfer: Parameter List copybooks
1. RPG Shell Programs File Specification copybooks
2. Parameter List copybooks @

3. File Specification copybooks

4. Physical File DDSs > QDDSSRC

* Note : Files are created in: Physical File DDSs
\JacadaStudio\appls\
<Applname>\gds

THE SHELL PROGRAM

The Shell Program is a template for the host program that drives a Jacada Studio window. The Shell Program provides a jump-start for the host
programmer. It is an automatically generated program that performs the mandatory API actions involved in displaying a Jacada Studio window.
This program should be used by the programmer to implement the business logic.

* Note : The generated shell program contains all you need to test run an Application. The Read/Write statements in the automatically generated shell
programs are very similar to the way you Read/Write to a display file.

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Each time a Jacada Studio developer generates a Runtime for an application, a Shell Program for each window within the application is also
generated. The Shell Program, when completed, performs the same functions as a standard iSeries interactive application program. The difference
is that instead of using a display file to interact with the user’s terminal, a special file is used to interact with a graphical client that was created
with the Jacada Studio IDK. In addition, the program runs in batch mode.

Location of the Shell Program
After Runtime Generation, the Shell Program is found in the directory <Jacada Studio Root Path>\appls\<applname>\gds.

The file name is ShellProgram. RPG_OPM.<window name> or ShellProgram RPG_ILE.<window name>, depending on the version of RPG
specified in the wizard when the application was created.

5. OTHER GENERATED FILES RELEVANT TO THE SHELL PROGRAM

There are three other files created in the runtime generation process. These files are used by the automatically generated shell program for the
following purposes:

Files related to the window

The following three files are created for every window, in addition to the Shell Program:

RPG_xxx.<saname>$D | DDS code for window Buffer definition for the window. Jacada Studio generates one such file for
each window. This file defines one record, named <WindowName>B, which
holds a list of the fields defined in the window. Gets copied to the
QDDSSRC file, and must be compiled.

RPG_xxx.<saname>$F | File specification copybook for Contains RPG F-specs. Defines an external, ‘special” file. Links the window
window with a special file definition and with a Parameter List (PLIST) definition.
Gets copied to the QRPGSRC file.

RPG_xxx.<saname>$P | Parameter List (PLIST) copybook for | Parameter List (PLIST) definitions. These are RPG C-specs. Gets copied to
window the QRPGSRC file.

5

Files related to tables

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

If the window includes a table, three additional files are generated:

RPG_xxx.<saname>#D

DDS code for table Buffer definition for one table row. Jacada Studio generates one such file for
each table in the window. This file defines one record, named
<TableName>B, which holds a list of the fields defined in the row. Gets
copied to the QDDSSRC file, and must be compiled.

RPG_xxx.<saname>#F

File specification copybook for table Contains RPG F-specs. Defines an external, ‘special’ file. Links the table with
a special file definition and with a Parameter List (PLIST) definition. Gets
copied to the QRPGSRC file.Same as the preceding file, but is created only if
the window contains a table.

RPG_xxx.<saname>#P

Parameter List (PLIST) copybook for | Consists of RPG C-specs. Gets copied to the QRPGSRC file.
tableParameter list definition.

The files are generated in the directory: <Jacada Studio Root Path>\appls\<applname>\gds.

For Example:

You create an application called APPL01 to run in conjunction with RPG OPM programs. You name one of the windows SCRO1. This window
includes a table, which you call TABO1. When you generate a runtime for this application, the following files are created for window SCRO1:

RPG_OPM.SCR01#D

DDS statements for table TABO1

RPG_OPM.SCRO1#F

F-spec copybook for table TABO1

RPG_OPM.SCRO1#P

Parameter List copybook for table TABO1

RPG_OPM.SCR01$D

DDS statements for window SCR01

RPG_OPM.SCRO1$F

F-spec copybook for window SCRO1

RPG_OPM.SCR01$P

Parameter List copybook for window SCRO1

ShellProgram.RPG_OP
M.SCR01

Shell Program for the application.

6

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Installing the Shell Program

Each Shell Program and its associated copybooks must be moved to the iSeries. This is accomplished automatically by the FTP process that
occurs as part of Runtime Generation. At Runtime Generation, in the “Specify Host Information” dialog box, the wizard will ask you for the
information it needs to move the files. You will be walked-through this wizard later.

Generate Runtime Wizard - File Transfer
Specify the Following host inFormation: Hast: |12.34.56.?8 ot o

Hast - host name or IP address.
Login user - a user name for logging in ko the host, Login user: AMRA v Save
Login password - a password For logging in ta the host,

diN

< Back

Login password: [* [Save Cancel |

Target library - the destination library on the host, to which the files will be transferred.
The library will be created if it does not exist,
To avoid transFerring any files bo the host, uncheck the Transker Files check boz,

Target library: IM\"TUTORIAL

]

Help
IV Transfer Files

While we recommend that you let Jacada Studio’s Runtime Generation wizard copy the Shell Program and its associated files to the iSeries, you
do have the option of copying the files yourself.

To install the Shell Program:
1. Add code in the Shell Program to process the incoming data and to return the appropriate response to the terminal operator.
2. In file QDDSSRC, compile the <WindowName>$D member, and the <WindowName>#D member if the window has a table.

3. Compile the Shell Program.

Keeping Buffer Definitions in Sync

Be aware that modifying a window or table layout in Jacada Studio can change the total size of the associated window data buffer or table data
buffer. An example of this would be if you added a new field to a screen or table, or deleted or changed the length (size) of an existing field, as
shown in the Window Fields palette.

After such a change, it is important to remember to recopy the affected DDS file and Parameter List copybook to the iSeries machine, and to
recompile the DDS file and RPG program associated with the window. Otherwise there will be a discrepancy between the size and/or layout of
the buffer used by Jacada Studio compared to the size and/or layout of the buffer expected by your supporting RPG programs on the iSeries,
which may lead to unpredictable results.

The Generate Runtime wizard will take care of recopying the DDS files and Parameter List copybooks to the iSeries, but you must remember to
recompile the DDS file and the Shell Program.

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Contents of the Shell Program

This sample program is taken from the ITUTORIAL Demo application that is included in the package you downloaded from the Internet. The
code in the shaded portion of the program was added to the basic shell program by the programmer. Comments in Ariel Narrow font have been added
for your benefit. The Alpha references in the sample program are explained on page 10.

* This code was generated automatically by Jacada.
* Sub-Application: PMENU
* Time generated: Tue May 28 15:08:01 2002

* Import the file specifications for the current window.
A — y» F/COPY PMENUSF << This copybook was created at Runtime Generation
* Place other file specifications imports here.
*No other file specs needed for this program
*

* Import GDS E specifications
B ———3» E/COPY JRPGSRC, GDSESPECS << This copybook is installed with Jacada Studio.
* Place your E specifications here.
* No additional E-specs needed for this program
*
* Import GDS I specifications
C —— 3 I/COPY JRPGSRC,GDSISPECS << This copybook is installed with Jacada Studio.
* Place your I specifications here.
* No other |-specs needed in this particular program
*

* Import the parameters list Qefined for the windgw.)
D——3® C/CcOPY PMENUSP << This copybook was created at Runtime Generation
*

*

* Place your code for refreshing the window’s data here.
* There's no “refreshing” to be done for this particular screen
*
*

* This following line is added to Perform Loop until JSTACT = ‘EXIT’. This will occur when the user presses
* the “EXIT” button.
C JSTACT DOUEQ' EXIT’

* Display the menu screen

E— g C WRITEPMENUB
* Read the menu screen

C READ PMENUB 99

* Check JSTACT to see what button the user pressed. JSTACT was filled in by the method called
*‘ActionPerformed’ which is associated with each of the buttons on the main menu.
*

c* If ‘Exit’ was not clicked...

C JSTACT IFNE ‘EXIT’

C*

c* If ‘Work with Projects’ was clicked...

o] JSTACT IFEQ ‘WWP’ JSTACT was set to WWP by the method
¢ CALL ‘PPROJ’ so call prog PPROJ

C MOVEL*BLANKS JSTACT

C ENDIF

C*

c* 'Work with Resources’ clicked

o] JSTACT IFEQ ‘WWR’ JSTACT was set to WWR by the method
¢ CALL ‘PRESO’ so call prog PRESO

C ENDIF

c*

* %

* * *

QO

*

C

'Add Project’ clicked

JSTACT

‘Add Resource’ clicked

JSTACT

*INZSR

IFEQ ‘AP’
MOVEL' ADD’
CALL ‘PADDPR’
PARM

PARM

PARM

ENDIF

IFEQ ‘AR’
MOVEL'’ ADD’
Z-ADDO

CALL ‘PADDRE’
PARM

PARM

PARM

ENDIF

ENDIF
ENDDO

SETON

BEGSR

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

JSTACT was set to AP by the method

MODE 5 set mode to ADD
call pgm PADDPR, pass 3 parms

MODE

PRO# 50

MENU 5

MODE1 5

RES# 50

MODE1

RES#

MENU
IFNE EXIT
DOUE EXIT

* Place your initialization code here.
* There’s no special initialization code in this menu program.

C

ENDSR

Copybook PMENUSF is used by program PMENU

F*

Generated at:

FPMENUSD CF E

F

Sun Jun 30 12:38:59 2002
SPECIAL

GDSRAP

KPLIST PMENU

Copybook PMENUS$P is used by program PMENU.

C*

QO 00000

Generated at:
PMENU

*IN

Sun Jun 30 12:38:59 2002

PLIST
PARM 1
PARM ‘W’
PARM
PARM
PARM
PARM
PARM O
PARM
PARM

152
*IN

‘PMENU

\

GDSPLV
GDSTYP
GDSNAM
GDSLEN
GDSIND
GDSRC
GDSLC
LN
GDSEXT

CO
OB
WI

PYBOOK VERSION
JECT TYPE

NDOW NAME
BUFFER LENGTH
INDICATORS
RETURN CODE
LISTS COUNT
LIST NAMES ARY
GDS EXT. INFO.

JACADA STUDIO FOR ISERIES | 1
Tutorial Exercise Overview | 0

File PMENUSD defines the menu screen buffer for program PMENU.

A* HEADER FOR RECORD ‘MAIN’ OF SUB APPLICATION ‘PMENU’
A* THIS MEMBER WAS AUTOMATICALLY GENERATED BY JACADA
A* AT Thu Jun 20 14:22:44 2002

A* DO NOT MODIFY THIS MEMBER.

A* (C)COPYRIGHT JACADA

A‘k

A R PMENUB

A JSTACT 10A
A JSTMSG 80A

The Following Comments Describe the Shell Program Example Above (PMENU):
1. The elements that will normally appear in every Shell program are:
A - Copy statement(s) for the File Spec copybook(s) for the window’s screen(s) (item “A” in the listing)
* B - Copy statement(s) for one or two special Jacada Studio copybooks, depending on RPG language version.
* C-For RPG OPM these are GDSESPECS and GDSISPECS (items “B” and “C” in the listing); for RPG ILE there’s just GDSCOMMON.
* D - Copy statement(s) for the Parameter Lists associated with the window (item “D”).
* E - A write and read (via the API) of the screen (item “E” in the listing).

2. If the screen included a table, and additional copy statement for the table’s file specification would have been inserted after item “A”.
Additional code would also have been generated in the form of basic subroutines to clear, initialize, and read user input from, the table.

3. Item “B” is a copy statement for GDSESPECS copybook. This copybook is provided with Studio and is required in all programs using the API
for RPG OPM.

4. Ttem “C” in the sample program is a copy statement for the GDSISPECS copybook. This copybook is provided with Studio and is required in
all programs using the API for RPG OPM.

5. The WRITE and READ statements at “E” invoke the RPG API. Note that they were automatically inserted into the shell with the name of the
screen file as defined in the “DDS” statements in file ‘RPG_xxx.<saname>$D’.

Adding your Code to the Shell Program

Remember that the Shell Program as generated by Jacada Studio is not enough to accomplish meaningful work for you. In order to do that, you
must add the business logic code to it. Of course, the code that you add will depend entirely on the specific requirements of your window.

To help you understand the sorts of additions you need to make to your Shell Programs, we’ve included two sample Shell Programs that were
modified to work with specific windows in Appendix A of the API document. Like the program listed above, the windows in Chapter 3 of the API
document are also part of the Jacada Studio evaluation. You can also find the source code for these programs and the rest of the RPG programs
associated with this Jacada Studio evaluation, in the RPG source libraries for the iSeries that were installed.

4

Controlling the Initial Contents of the Shell Program

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

The Shell Skeleton controls the statements that will be generated in the Shell Program of every window. Besides the required copybooks, there
may be common subroutines or comment blocks required in every program at your particular shop. Rather than enter them manually in each
application’s Shell Program, you can enter them once in the Shell Skeleton and they will be automatically included in the generated Shell

Programs.

The Shell Skeleton is called ShellSkeleton.RPG_ILE or ShellSkeleton.RPG_OPM, and is located in the

<Jacada Studio Root Path>\appls\<applname> directory.

* Note : Do not change the order of the copybooks as they appear in the original version of the Shell Skeleton.

THE JACADA STUDIO RUNTIME ARCHITECTURE

The following diagram shows the Jacada Studio Runtime architecture:

Client _ Server Computer Application Server

(PC) =B\ (T, iSeies, Solaris) (Series)
User connects The Jacada Server The monitor calls the CLWrapper
with a browser connects to the monitor wihich calls the application

Client 2 iim _l
o b a— Monitor
:/ JACAD A\\\
— . SERVER
E_ - = \-\ & CL Wrapper) =

—
- AP
A
/

(Program
The Jacada Server sends the The application talks
GUI to the browser with the Jacada Server

The user interacts
and the process
continues

1
1

JACADA STUDIO FOR ISERIES | 1
Tutorial Exercise Overview | 2

WHAT You CAN EXPECT

The following table shows an overall picture of the files that you can expect to encounter throughout this tutorial, and their location in the
development architecture. Some of the files have been prepackaged and installed by the installation process and some you will create for yourself
in the semi-built MYTUTOR application. The GUI Information columns show files that were either prepackaged or you will create in the IDK
on your development machine. The iSeries Files columns show the files that were either prepackaged or you will be created during the runtime
generation process and transferred to the iSeries.

GUI Information iSeries Files
Window RPG RPG

Applicatio Window Records Copybook | Copybook

Window Title Name Library Program / | Window/ | File Specs | Parm Lists
Shell Table / Table Specs

You will create in FIRSTAPP You will create in FIRSTAPP

Prepackaged with ITUTOR; you will create in MYTUTOR Prepackaged with ITUTORIAL; you will create in MYTUTO RIAL

Main Menu iTutor Menu PMENU ITUTORIAL PMENU PMENUSD | PMENUS$F | PMENUSP 2
Add/Edit Resource iTutor 1/0 PADDRE ITUTORIAL PADDRE PADDRESD | PADDRESF | PADDRESP 3
Add/Edit Project iTutor 1/0 PADDPR ITUTORIAL PADDPR PADDPRS$SD | PADDPRSF | PADDPRS$P 4
Work with Projects iTutor Table PPROJ ITUTORIAL PPROJ PPROJSD PPROJS$F PPROJSP 5

PPROJ#D PPROJ#F PPROJ#P

Prepackaged with ITUTOR & MYTUTOR Prepackaged with ITUTORIAL & MYTUTO RIAL

Project Assignments iTutor Table PASSI ITUTORIAL | PASSI PASSI$SD PASSISF PASSISP
MyTutor MYTUTORIAL PASSI#D PASSI#F PASSI#P

Display Resource Assignments iTutor Table PDRESA ITUTORIAL | PDRESA PDRESASD | PDRESASF | PDRESASP
MyTutor MYTUTORIAL PDRESA#D | PDRESA#F | PDRESA#P

Work with Resources iTutor Table PRESO ITUTORIAL | PRESO PRESO$D PRESOSF PRESOSP
MyTutor MYTUTORIAL PRESO#D PRESO#F PRESO#P

Assign New Resource to Project iTutor Table PASRSC ITUTORIAL | PASRSC PASRSCSD | PASRSCSF | PASRSCSP
MyTutor MYTUTORIAL PASRSC#D P ASRSC#F P ASRSC#P

Columns in the GUI Information Section

Application Name Name of the IDK application in which this window resides or will be created.
Window Type Type of window (e.g. I/O, Table, Output).
Window Name Name of the window in the IDK.

Columns in the iSeries Files Section

RPG Library Name of the library in which the files associated with the window reside or will be created.
RPG Program / Shell Name of the RPG Program associated with the window (preexisting or will be created).
Records Window / Table Name of the DDS Physical File associated with the window (preexisting or will be created).

Copybook - File Specs / Table Specs Name of the File /Table Specification copybook associated with the window (preexisting or will be
created).

Copybook - Parm Lists Name of the Parameter List copybook associated with the window (preexisting or will be created).

Exercises Number of the tutorial exercise in which the window will be built.

Jacada Studio for iSeries

Walk-Through of the IDK Interface

Objectives:
+ To introduce the reader to the Jacada Studio for iSeries Interface Development Kit (IDK)
¢ To familiarize the reader with the basic structure and navigation of the IDK

+ To expose the reader to the fundamental components of the IDK including toolbars, palettes, and basic terminology

In this section, you open the Jacada Studio for iSeries Interface Development Kit (IDK) for the first time and get acquainted with the IDK
interface. You open the ITUTOR demo Application and use it to identify the different features of the IDK interface. During this introduction to the
IDK interface, it is important that you not make any changes to the Application, so that it will run it properly later in the Application Walk-
through section. So, if at any point in the IDK overview you are prompted by a message box to save your Application, reply to the prompt by
clicking the No button. This section also acts as a stand-alone reference and glossary of IDK interface features and terminology. It is not necessary
that you learn each of the interface elements in this section by heart before going on to do the exercises. Just remember that you can always use

these pages as a reference, when you need to.

You are here!

v
: . Your First . Add / Edit . . "
Tutorial Exercise e Main Menu Add / Edit Project Work With
Overview IDK Walk-Through AEggf;ts':“ Exercise Eii?gi?: Exercise Projects Exercise
In this section you learn about: sl
. . I il smp| R
Opening the Jacada Studio for iSeries IDK RIS T
. - - B
Opening the ITUTOR Application & o

The Application Combobox
The SubApplication Combobox

¢ N T\ R
oTK Wit S
IDK V' | Add Resources :
iews Iy g - B

IDK Menus o s
The Standard Toolbar _
The KnowledgeBase
Apply Design Changes

The Design View Palettes

Setting Up Your Workspace
Control Editing and Manipulation Options

OPENING THE JACADA STUDIO FOR ISERIES IDK
To open the IDK interface after installing the product:

From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

OPENING THE ITUTOR APPLICATION
To open the ITUTOR Application from within the IDK interface:

1. From the IDK File menu > choose Open > Open Application.
The Open Application Dialog is invoked.

2. In the Open Application Dialog >
Select ITUTOR from the Application Name List >
Click OK.

THE APPLICATION COMBOBOX

The IDK Standard toolbar now shows that the ITUTOR is the active
Application in the both the Titlebar and the Application
Combobox.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

é Launch Internet Explorer Browser
Q Sametime Connect Iﬁ
‘ shortut to Add-Remove Programs)

| Jacada Studio
® I {3 accessories b far iSeries
c Micrasoft Excel
! @ Documents 4 Micrasaft Word
Acrobat Distiller 5.0
% Sattings '
E [#} Adobe Acrobat 5
5 @ Search v [Studia F [Jacada Server Administratar
8 ! Jacada Server
I @ Help a
E shut Down.

i Jacada Studio for iSeries E =10 x|
File ' Edit Subapplication Wiew Options Utk Help
Hew F v|Al‘%|QE|§E
Lo] oy
lose Application Open Library,
Delete H
Application Properties...
KnowledgeBase.. .
Saye Al Gt/ +5
y
(Generate Runtime. .,
SR S TR
(B Hame: o |
fruros] -
Cancel
MTLTOR C)
7
.5) Jacada Studio for iSeries Application: ITUTOR ~— Application
File Edit Subapplication View Options Utility Help hame
o appears in
®| @[] Hla e

)

Application name appears in
Application Combobox

*~

*~

4. THE SUBAPPLICATION COMBOBOX

Now we will open the first of the pre-built Subappplications in the
ITUTOR demo Application.

The term “Subapplication” is used to describe the contents of a GUI
Window in the Studio IDK. Each window is referred to as a
Subapplication. Subapplications consist of GUI Elements, Host
Fields and the links between them.

To open the PMENU Subapplication in the ITUTOR Application:

From the Standard Toolbar > open the Subapplication Combobox
> select the PMENU Subapplication.

The PMENU window is opened within the IDK interface. The
Subapplication combobox and IDK Titlebar show that PMENU is the
active Subapplication.

* Note : The PMENU Subapplication is the menu window, the first
window that you will see in the demo Application runtime.

The Subapplication List

The Subapplication Combobox shows a list of all of the
Subapplications that exist in the current Application.

To open an existing Subapplication:

From the Standard Toolbar >
Select the Subapplication from the Subapplication List in the
Subapplication Combobox.

or
From the Standard Toolbar >

Usethe 4 and W icons to move up and down in your
Subapplication List.

* Note : When moving between subapplications, you receive a message
box prompting you to save your application. If you switch focus
between Jacada Studio and another open application when a
message box dialog is open in the Jacada Studio IDK, this
message box disappears behind the open subapplication
window.

To retrieve it, while holding down the Alt key:

1. Press the Tab key to bring up a windows dialog box showing
all active tasks.

2. Press Tab again as many times as necessary to select the
windows icon.

3. Release the Alt key and you will see the message box.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

i Jacada Studia for iSeries Application: ITUTOR -

subapplication: PMENU -

File Edt Subapplication View Design Options Uity Help
® O Seo Sle% 8 2 o w0 [BEER

File Edit Wiew Help
SubApplication name appears

in SubApplication Combobox
- -and IDK Titlebar

..5_ Jacada Studio for iSeries

Application: ITUTOR - Sub#
File Edit Subapplication Wiew Design Opkions Utlity Help

| & [imutor =] |PmENU EE S 4

PADDFR .
Select the PADDRE + +
desired PASS|
SubApplication IPDRESA | Move up and
from the ——————3m= [HUERCIHNGN_S 0, your
SubApplication SubApplication
List List using icons

To open an existing SubApplication, In the standard toolbar >
select the desired SubApplication from the SubApplication
Combobox or use the icons to move up and down in your
SubApplication List

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

5' IDK VIEWS ¢ Jacada Studio for iSeries Application: ITUTOR - SubApplication: PMENU - View: Des
Th PMENU S b 1 t . dt D . V' b d f 1t File Edit Subspplication W Design Cptions Ukiliky Help

e ubapplication 1s opened to Design View by default. e [Toron v Desiontien |—_,_ v 8 o =0 aE
IDK has two working views, Design View and Test View. You can - & [N = | Ll JaEl
switch between these two views in the Standard Toolbar via: + +

The Design View Icon &

or Switch between Design View and Test View via the View Menu

The Test View Icon = or the View Icons on the Standard Toolbar.

You can also switch between the two views via the View Menu.

| () @ [or FMENL ~le %

=8 [smRm

Fle Edt View Heb

O mE——

W JSTMSE
B JsTACT

. . /] =i
Design View o
Design View is the IDK view in which you build and modify your ‘ . —
Application. Here you create and modify your GUI window and its P %L X m,.m%'
contents. e e :

S %AN | E

The PMENU Subapplication open in Design View of the IDK
Interface.

Test View

Test View is the IDK view in which you test the functionality of your
Subapplications virtually, without running an actual runtime. In Test
View, you can see the functionality attached to GUI elements in your

window.
x|

For example: Clicking on one of the menu buttons in your
Subapplication will bring up a dialog that explains the functionality
associated with the menu button.

In Runtime this will ackivate the Following method:ActionPerfarmed.
Updates the JSTACT field and sends control back to the host application

--

Clicking on one of the menu buttons in your SubApplication will
bring up a dialog that explains the functionality associated with
the menu button.

IDK MENUS

The Menus in the Jacada Studio for iSeries IDK are context sensitive;
they change according to the view that you are in. A Design menu is
added when you are in Design View. This menu does not appear
when you are in Test View.

THE STANDARD TOOLBAR

The IDK Standard Toolbar is also context sensitive, and changes
according to the view that you are in. From the Standard Toolbar you
can:

Click the B iconto Access the KnowledgeBase
Click the "1 iconto Create a New Subapplication
Click the & iconto Save your Subapplication
Click the 4 iconto Move up in your
Subapplication List
Click the W iconto Move down in your
Subapplication List
Click the &3 icon to Apply Design Changes
Click the X2 iconto Undo your last operation
Click the '§2 iconto Redo your last operation
Click the &% iconto Switch to Design View
Click the B iconto Switch to Test View

THE KNOWLEDGEBASE

The KnowledgeBase is the place where rules regarding the properties
of IDK elements are stored. If you create a definition once in the
KnowledgeBase, instances of the knowledgebase definition can be
reused throughout the Application. We refer to changes made in the
KnowledgeBase as global modifications, since they effect all
instances of the modified object across the Application. The
KnowledgeBase instances can be modified locally in Design View.
Modifications made in Design View override the properties of
KnowledgeBase definitions. Modifications made in Design View are
considered local modifications, since they only effect the one
specific instance that was modified.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

'-'E':-.Jal:ada Studio for iSeries

Application: ITUTOR - SubAppli
File Edit Subapplication Wiew Options Utility Help

Application: ITUTOR - Subdpplig
File Edit Subapplication View Design ©Options Utility Help

'-'E'.‘-.Jacada Studio for iSeries

)

Added Design Menu

Application: ITUTOR - SubApplication: PMENU - ¥iew
File Edit Subapplication Yiew Design Options Utlity Help

'-'EE-.Jacada Studio for iSeries

| 0 & JimuTor | GE S AR ,t:zHEEm
T SubApplication Switch
Application Combobox between
Combobox Views
Save SubApplication Undo / Redo
Apply Design
New SubApplication i ,f"ges 9
Access the Move up and down
KnowledgeBase the SubApplication list

5

4

Accessing the KnowledgeBase
You can access the KnowledgeBase Interface:
From the File menu > KnowledgeBase...

or

By clicking the KnowledgeBase Icon % in the Standard
Toolbar

The KnowledgeBase Interface

The KnowledgeBase interface consists of four panes:

[Fiie

Mew 3
Jpen »
Close Application

Delete »

Application Propetties. ..

Save all

Chrl+3

aenerate Runtime. ..
Run Application. ..

Exit

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

4% Jacada Studio for iSeries Appl

File Edit Subapplication WYiew Desi

| | [imotoR =] [Py

The KnowledgeBase Icon

Upper Left Pane Field Definitions Pane

Upper Right Pane Field Definition Properties Pane
Lower Left Pane Representation Definitions Pane
Lower Right Pane Representation Definition

Properties Pane

Field Definitions Pane
Shows the Field Definitions that reside in the KnowledgeBase.

Field Definition Properties Pane
Where Field Definition properties are defined and modified.

Representation Definitions Pane

Shows the Representation Definitions that reside in the
KnowledgeBase. You can also see the components that make up the
Representation Definition in this pane.

Representation Definition Properties Pane

Where Representation Definition properties are defined and
modified.

* Note : The Field Definition and Representation Definition explanations
will follow.

KnowledgeBase Definitions

Jacada Studio for iSeries comes with a default KnowledgeBase that
consists of various types of definitions. The same definitions exist in
the KnowledgeBase that ships with the demo version of the product,
plus other definitions that were constructed for the purpose of this
tutorial. KnowledgeBase definitions created solely for the purpose of
this tutorial have the prefix “Tutorial ”.

For example, Tutorial Label Combobox is one of the definitions created
Just for this tutorial.

@ KnowledgeBase Definitions oy [=[]
Fle Edt Defne Tools Yiew Panes
DRSS % e =
FEIBETED {Propertiss] | Representaton imformation
~ FDACOM N
-~ FDBDAT Update I Revert
~ FDBILL
- FDDEPT Field Field
- FDEDAT Felpane; [FOI Definiti
- FDFNAM initi erinition
e Definitions e o
. roperties
. Emé‘és Pane Dats size: El P p
i ane
- FDPCOM X
- TR DE(lmaIEusluurvs.In_
- FOPMUM Defatit Data Flowr
- FDRCOM ’—r,\ - e -~ hd
. FDAFSN El
Representaton Definiors| [| show [Tuorl =] Buffer | Manager | Offsetisize| Style | Format | Events j
Tutorial_Add -
Tutorial_Back R . :| evert
Tutarial_Button e n ion Chack box style:
e s YEPTESENALIO mawe Representation
Tutorial_Cancel NIt = . ags
Tutorial_Checkbortfar Definitions retee Definition
Tutarial_Columnlabel C .
e ane Properties Pane
B Checkor]
Tutarial_Columnlabe| Checkbox_Delte =
Tutorial_Colmnlabel Combobex Font & Color. |UnChecked B
nLabel Combobor_Status
J| E]
yA

Representation Dehml\onsl D ‘Sho

+ Tutorial_Menu_Leftimage ‘I

Tutorial_Menu_Rightimage
Tutorial_Meru_TapLeh
Tutorial_Menu_TopRight
Tutorial_Menu_WindowHeads
Tutorial_Menultem_List
Tutorial_Menullptions
O Butten

[Button2

- Button3

{1 -

-

Tutorial_OKButton
Tutorial_Output_Checkbor ||
Tutorial_Output_Date
Tutorial_Output_dateE ndDate
Tutorial_Output_dateStartDate
Tutorial_OutputField
Tutorial_PASRSC_Menulten_L

-t - - - - B

Tutarial_ PASSI_Menultem_Lisl+
Kim| |

Buffer]Managar]OFFSethlzeI Style] Format I Events

pdate Fevert
Button type Basic styl
{ & Standard Default { ¥ Tab stop [~ Initial caps. ‘

Butkaon styles Teuk:
[¥ Transparent
™ Reiect Focus

Eont & Color...
[¥ Mo button border %‘
V¥ Sguared corners Associated images...
I hgtext Flacements...

Special EFfects...

Iapp\s\ltutnr\h\tmaps\tnpilaft‘]pg

"Stagdard image Ffile

EBrowse. .. |

4

* Note : The properties of default knowledgebase definitions can be
modified to fit your company’s specific standards

Representation Definitions

A definition in the KnowledgeBase can be constructed of one or
multiple GUI controls. Together, these definitions make up the
“Representation Definition” - or the “rule” stored in the
KnowledgeBase, which describes controls and the properties
assigned to them.

For example: The four buttons in the menu screen were created in
Design View and saved to the KnowledgeBase as a group. This
group, and the properties assigned to it (attached images,
functionality and style) were all saved to the KnowledgeBase as a
‘Representation” named Tutorial_MenuOptions. This method of
definition allows you to create complex GUI controls, made up of
multiple definitions, and save them for reuse across several
Subapplications.

Field Definitions

The buffer fields that carry data to and from the host Application, and
the properties assigned to them, make up the “Field Definition” - or
the “rule” stored in the KnowledgeBase, which describes the fields
and their properties. A Field Definition can be attached to one or
more Representation Definitions in the KnowledgeBase for use
within the Application. You can import your field standards from
your databases into the KnowledgeBase. This feature is not covered
in this tutorial, yet it is an important feature which substantially
expedites KnowledgeBase creation.

Methods

Methods are short scripts that allow you to enhance an application's
functionality. Methods can be used to control and manage behavior at
both the client and the host, and often act as conduit for
communicating certain client activities to the host or vice versa.
Methods can also be used to implement basic presentation logic such
as client-side validations or the conditional display of controls or
text. Jacada Studio for iSeries comes with many predefined methods
that take care of the more general aspects of data flow and interaction
between the host application and its graphical clients. Jacada Studio
also provides you with the tools necessary to write new methods and
modify existing methods. Methods can be highly specific, or quite
generalized allowing a high degree of reuse. The degree of
interaction that you can implement with the proper use of methods
allows you to achieve a level of application sophistication that far
surpasses that of applications limited by green-screen presentation.

Field Definitions

- FDACOM
FOBDAT
- FDBILL
FODEPT
AT
- FDFMAM
-~ FOHEAD
- FDLMAM
- FDMaAIL
-~ FDMODE
- FDPCOM
- FDPMAM
FOPMUM
-~ FDRCOM
FDRESHN
- FDSORT

JACADA STUDIO FOR ISERIES | 7
Walk-Through of the IDK Interface

Properties I

Field name: IFDEDAT
Data bype: IAIDhaNumeric =

Data size:

[@
Decimal positions: ID

Defaulk Data Flow
(£ output " Input ¥ Bath

Representation Information

[Ipdate RiEvErt

JACADA STUDIO FOR ISERIES | 8
Walk-Through of the IDK Interface

Window Layouts

Window Layouts can be thought of as display templates that enable
developers to design and implement consistent looks and feels within
an application. An application will likely have several Window
Layouts that define different window styles. Single record windows
may have their own look and feel, while windows with tables have
another. Although a single application may implement different
Layouts for different window styles, Layouts can share common
properties such as background graphics, company logos, and an Exit
button. Because Window Layouts are defined and stored in the
Knowledgebase as global components, sweeping change to the look
and feel of an entire application can be made by altering a Layout and
applying that change to all subapplications built using that Layout.

ation: ITUTOR - Subdpplication: HELLOW - ¥

9. APPLY DESIGN CHANGES

I Options Ukility Help

If you make a change in Design View, it is recommended to apply oW] & W | 5 e 2| =k
your changes by pressing the Apply Design Changes button c in h
the Standard Toolbar. Apply Besign Changes

Use the Apply Design Changes button to Apply your changes

Window
Components Palette
10. THE DESIGN VIEW PALETTES | Q N
When working in Design View, there are four palettes at your e | z
disposal. The image to the right illustrates the default placement of = window]
the four Design View palettes, when a Subapplication is opened. The ' g ielldtf T
alette

palettes are floating and can be dragged by their title bars to any
location in the screen.

4 v',i , -y =
Usage of Design View Palettes = Dofinitions — g pre—
Projects Palette N
Control Editing Palette Manipulate / edit controls EZ/,ZIZZI i e
Definitions Palette Shows KnowledgeBase fields Palette
and representations - _—
Window Fields Palette Lists fields in the open] =
subapplication ‘
Window Components Lists representations in the open Default placement of the Design View palettes

Palette subapplication

*~

Viewing the Design View Palettes

You can toggle the Design View palettes on and off via the Standard
Toolbar by:

Toggle the Control

Editing Palette by clicking the & icon
Toggle the Definitions

Palette by clicking the B icon
Toggle the Window

Components Palette by clicking the & icon
Toggle the Window

Fields Palette by clicking the [E icon

Bring Palettes to Front

If any of the palettes become obscured by a window, click the F12
key on your keyboard to bring them to the front.

You can also right-click (with your mouse pointer over the title bar,
click the right button on your mouse) the title bar of the control
editing palette, and choose Always on Top if you want the palette to
always appear on top of the active window.

The Control Editing Palette

When a control is selected in Design View:

1. Right click the control (with your mouse pointer over the control,
click the right button on your mouse) to receive a Right Mouse
Button menu with the object’s editing and manipulation options.

2. Access the object’s editing and manipulation options via the
Control Editing Palette.

* Note : Control editing and manipulation options are discussed in the
next step.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

ITUTOR - SubApplication: PMENU - Yiew: Design
ions Ukility Help

_Zew g oo (xE|gREE

T

Window Fields
Palette

Control Editing Palette
Definitions Palette

Window Components Palette

Icons Added to the IDK Standard Toolbar in Design View.
These icons can be used to toggle the Design View Palettes
palettes on and off.

Control Editing | |
== Mave

R e F S mEE L
= E O E T A

X Close

Alt+F4

Right click the control editing Palette Title bar and choose >
Always on Top if you want the palette to always appear on top
of the active window.

Run Function Definition. ..

~ Align Left

Align Right
Align Top CI) RMB
Align Bottom .

Horizontal Center
Herizantal Group Center

wertical Equal Spacing

Hotizontal Equal Spacing
Equal Width
Equal Height
Equal Size
S Adjust Size by Text
EEl R I A e 2 N Set Font and Color..,
=0 E AW Advanced Editing. ..
&
» Send to Back.

Save to knowledgeBase

.
g ha

Cut

Copy
Paste

When an object is selected in Design View, access the control
editing / manipulation options via the right mouse button menu
or the Control Editing Palette.

JACADA STUDIO FOR ISERIES | 1
Walk-Through of the IDK Interface |0

The Definitions Palette

The Representation |
The Definitions Palette allows you to view the names of Fields and g eZ”’t’ ons View ———p-{= 8] | 1] o8 |
Representations that are defined in the KnowledgeBase. From this wron Type Filter —3m | Show | -
palette, you can add instances of the Fields and Representations that gl MenubptionTable =]
exist in the Know!edgeBase to your Subgppligation, by drggging Representations that E"Egi{t;ﬂp'ate
them onto your window. There are two views in the Definitions ship with the default OKButtonMenubeselerator
Palette: Representation Definitions View and Field Definitions View. Jacada Studio DutputField
KnowledgeBase R adiﬁﬁmup [|
Spin
Representation Definitions View Button @ L Table
; ; e Vi : " Representations 1 P TutoriaAdd
Click the Representation Definition View button in the Definitions pt o for th Tutarial_Back
Palette to see the list of Representation Definitions defined in the ;Lerf)oese g; thii wiorial T o
KnowledgeBase. Representation Definitions created solely for the have the prefix Tutorial_Cancsl
f this tutorial h th : tion Tutorial “a e i e”p e Tutorial_CheckboxrorM
purpose of this tutorial have the naming convention Tutorial xxx, Tutorial Tutoia] CobmnLabel Checkbor,
with the preﬁx “Tutorial”. P Titerial Celimel ahel Check hoy fhd|

* Note : Use the filter at the top of the Definitions Palette to sort the
definitions in the palette by type. The filter options can be
customized within the IDK.

Field Definitions View Button [El
Click the Field Definition View button in the Definitions Palette to The Field Definitions =l
see the list of Field Definitions defined in the KnowledgeBase. View Button —— Jti[E] | (9| o8 |

FDACOM -~
FDEDAT
FDBILL
FDDEFT
FDEDAT
FDFMAM
FOHEAD
FOLMAM
FDMAIL
FOMODE
FOPCOM
FOPMAM
FOPHLUIM
FDRCOM
FDRESM
FDSORT
FDSTAT
FDTACT

FMTASK]

4

The Window Components Palette

A list of the components that reside in your Subapplication. When
components are added to the window via the Definitions Palette, they
automatically receive a name that appears in the list of components in
the Window Components Palette. Modify Control properties via the
control editing section of the Window Components Palette.

* Note : Remember: Please do not modify the ITUTOR application.

The Window Fields Palette

A list of the fields that reside in your Subapplication. Notice the
difference in icons for local fields in the list and global fields in the
list, defined in the KnowledgeBase. At the top of this dialog there are
two buttons. You can create local fields and import global fields via
these buttons.

Create New Local Field [

Use this button to create a new local field in the Subapplication. You
can define a field’s properties via the control editing section of the
Window Fields Palette. You can only use a local field in the
Subapplication in which it was created.

Add Field From KnowledgeBase &

Add an instance of a field defined in the KnowledgeBase. Pressing
this button brings up the Import Fields Dialog from which you
choose the fields that you wish to use. You cannot modify the
properties of fields imported from the KnowledgeBase.

List of Window
Components

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface

- Contrals
Button001
Button002
ButtonaP
Button&R

Frame

H000DOOE

Window Components

ButtonEXIT
ButtoniawP
Buttoria 'R

[

Control Editing
Section

Text

[Basic styles

Initial capitals
Tab Stop

= Button styles

Button tppe
Tranzparent
Reject focus

Main Me. ..
Mo

Mo

Standard
Yes
ez

7]

[

Global Fields [¥4

imported from
KnowledgeBase —l

Local Field ——3

|

B PMENU
JSTHSG
JSTACT

Control
Editing —
Section

Mame

Type

Size

Diecimal pozitions
Flova

LOCAL
Alphaturmeric
1

1]

Both

1
1

JACADA STUDIO FOR ISERIES | 1
Walk-Through of the IDK Interface |2

Using Palettes to View The Relationship Between Pt
Window Components and Window Fields , - :
......... oindow el | e 1
When you select a component in the window, the component’s name . Do _ -E:
is automatically selected in the Window Components Palette. If there . - e 4 mHoo -
is a field attached to the component, the field name is also selected in i ke & o
Name: -
the Window Fields Palette. e o = roim &
= oo =
The converse is also true: if you select a component in the Window mente: [[T o j
Components Palette, it is automatically selected in the window. The = - -~~~ -~ T
attached field (if any), is selected in the Window Fields Palette. =~ - - - - - - = = .
This selection system also works when fields are selected in the
Window Fields Palette.
SETTING UP YOUR WORKSPACE
The grid tool provides a visual guide for aligning controls on the GUI
in Design View. The Snap to Grid option is useful in regularizing the
placement of controls on the GUIL.
Configuring the Grid
To configure the grid:
1. From the Options menu select Window Options. The Window
Options dialog box opens. Windov: Options X
2 S 1 t th G 'd Att 'b t t b Controls Algorithms I Contral Editing] ‘window Algorithms] arid Attributes %
. Select the Gri ributes tab: sty
3. In this dialog you can set the following options: Snap to grid:
Show grid: 2
Horizonkal grid size: I—ZDE
Grid Style The grid markings can be either lines or Wertical grid size: s
dots.The default is dots.
Snap to Grid When enabled the upper left corner of

the control snaps to the nearest crossing
of horizontal vertical grid lines. When a
group of controls is selected, the upper
left corner of the imaginary rectangle
that encompasses the group snaps to
the grid line crossing.

Show Grid When enabled the window is displayed
with a grid.
When disabled the grid is not displayed

Horizontal Grid Size Set the horizontal distance, in dialog
units, between the grid lines.

Vertical Grid Size Set the vertical distance, in dialog
units, between the grid lines.

4

Toggling the Grid on and Off
You can toggle the grid on and off by:

Going to the View Menu > select Customize > Show Grid

CONTROL EDITING AND MANIPULATION OPTIONS
This step will introduce you to the following subjects:
+ Modifying Component Properties
+ Selecting Controls in the GUI

+ Control Editing and Manipulation Options

Modifying Component Properties

Modifying component properties is done through the Component
Properties Dialog in Design View. The Component Properties dialog
automatically displays the properties of the component that it was
accessed from. For example, when accessed by clicking on an edit
component, the edit component’s properties will appear, when
accessed by clicking on a button component, the button component’s
properties appear.

To access the Component Properties Dialog:

In the Window Components Palette, double click the compo-
nent’s name or right click the component’s name and choose
Modify from the floating menu.

or

Double click the control on the window (for menu items, open
the menu and double click the item).

Deleting Components

To delete a component:

1. In the Window Components Palette, select the component you
wish to delete.

2. Press the Delete key
or
Click with the right-mouse button. In the floating menu, choose
Delete.

3. In the messagebox that opens, click Yes.

* Note : A control can be also deleted by selecting it in the window and
pressing the Delete key.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface |3

File Edit Subapplication | view Design Options LUkiity Help

@ | e IW v Design Yiew

Tesk View

Cuskormize

Palsttes

olew |80

3
3 Show Overlapped C!grols |

Delete g DEL

Rename Fz
Jump ko definition. .. F&

Find Ctrl+F

Tent ;I |
D anie ahilan

Button Component x|

|

Buffer I Manager I

Button bype EBasic styles
’7 Standard ¢ Default ’7|7Tab stop I Initial caps.

Format I Events

Button skyles Texk:

¥ Transparent I
™ Reject Focus
Font & Color...
[+ Ma butten border w

¥ squared corners

Jacada Studio for iSeri x|

@ Dislete selected controls ?

Associated Images. ..

W Modify. .. EMTER
[Buttor?
S b ——
P Jumnp ko definition. ..
. - Teut Find i+
Bl Basic siyles
Initial capital: 'No
N Tab stop YVee LI

Renaming Components

To rename a component:

1. In the Window Components box, select the component you wish
to rename.

2. Press the F2 key
or
Click with the right-mouse button. In the floating menu that opens,
choose Rename.

3. The component name becomes editable. Type in the new name.

Selecting Controls in the GUI

In Design View, controls can be selected in several ways:

Individually A single control can be selected.
Additional controls can be added
individually to the selection.

In Groups All the controls can be selected or

A group of controls of a certain type
can be selected.

Leading Control

All selected controls are surrounded by sizing handles. The Leading
control is the control whose sizing handles are emphasized when a
group of controls are selected. The control editing options use a
leading control to establish the standard by which the other controls
are manipulated. For example, when a group of controls are resized
they assume the size of the leading control. In the illustration to the
right, the “Project #” label is the leading control.

Selecting Controls Individually

Select a control by clicking on it. When a control is selected it
receives sizing handles.

+ To select more than one control press SHIFT + Click each control
to be selected.

+ To add controls to a selection press SHIFT + Click on the
additional controls.

+ To remove one control from a selection, use SHIFT + Click on the
control to remove.

¢ Clicking a selected control designates the clicked control as the
leader control.

¢ Clicking the window's client area clears all selected controls.

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface |4

=l

ButtondP
- ButtordR
] ButtonEXIT [

: -0 Frame Delete DEL
LA Variablectio
ﬂ Wariabletess
B window

Jump to definition.*,

P Find Cl

Text ;l |
M1 Rasie shiles

R _u _. % i
B Fodaed, o

Banags « -
ame:o I
o o o, .

; o e ;
Ejepﬂrutmentg | j|
%tﬂﬂ Bate:g | i :l

N

EndBaes 57

" Hcomments:3 I
- o o O: =

Selecting Controls by Group
To select a group of controls on a Window:

1. Click on the window client area while holding down the left mouse
button and drag the cursor across the window to mark a
rectangular around the controls to be selected. The controls that
are inside of the rectangle or touching the rectangle are selected.

2. Use the Select options in the Design pull-down menu to select all
controls of a specific type.

The Select Options in the Design Menu

Selecting one of the Select options in the Design Menu changes the
cursor to a cross-hair. Drag this cursor across the Window to mark a
rectangular area on the screen. The controls that are inside of the
rectangle or touching the rectangle are selected.

The following options are available for selecting controls:

Run Selection Definition | An advanced topic that will not be

introduced in this tutorial.

Selects all the controls within the
rectangle. When selected, the mouse
cursor becomes a crosshair. While
holding down the left mouse button and
dragging the mouse across the window,
the “Many” option selects all of the
controls in the rectangle.

Many

All

Selects all the controls.

Check Box

Selects all the Check Boxes within the
rectangle.

Combo Box

Selects all the Combo Boxes within the
rectangle.

Group Box

Selects all the Group Boxes within the
rectangle.

Static

Selects all the Static controls within the
rectangle.

Textbox

Selects all the Adjustable Edits within
the rectangle.

Button

Selects all the Buttons within the
rectangle.

Link

Selects all the Links within the
rectangle.

es Application: ITUTOR -
View | Design Options Uity Help

I«

* Name:

" Start Date: m

: End:Dﬂte::

© Project #: Cuty
— R B .545 o .
ame:o

.o.o.o o

" Department: I: @

o

: Corﬁmenté: l_ .

SubApplication: PADDPR -

JACADA STUDIO FOR ISERIES | 1
Walk-Through of the IDK Interface |5

'B’mjgm#ig 'gjutgjutg'
e
Ejeparl%ment:
.g. o . % :
“htart Date:5 a I N
.O. o. .0 o
.Ef.nd Eldle:g | .-"f —
Ee A Ta g a
. &iomrﬁénté:g —
o [=} ni

Yiew: Design

Apply Design Changes

2 ¢ [=8[wEwm

I Gl SelEsted Gt

Subapplication Menu Editor...
Floating Menus. ..

Window Layouts. ..
ct
Arrange

Savs ko KnowledgeBase. .

Many
all

Ru@]n Definition... ‘
>

User Triggered Methods...
System Triggered Methods. ..

Tabhing Crder

Check Box
Combo Box
Adjustable Edit
Group Box
Picture Button
Push Button

Static

Button Eg

Link.

* Project #: it
* Name:
: Dep.ﬂrlme.nt I:
:Star.t Date.: m
[
: Comments: l_

: End:Dﬂte::

C

Project #
- | Name: I
:@ 'Depanment: |:
. Swbae [y
— Ctndvae [
I . Comments: 37

Cutput

Clearing Selected Controls
To clear selected controls in the window client area:
¢ Click the window's client area to clear all selected controls.

* Press the Shift key while dragging the cursor to add controls to

Wiew | Design Options Uty Help
those already selected in the Window. % Apply Design Changes

IModify Selected Eantaaly. .

* Press the Shift key and click an already selected control.

Subapplication Menu Editor. ..
Floating Menus. ..

‘Window Layouts. ..

Control Editing and Manipulation Options Select v

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface |6

Run Function Definition,. . |

The Control Editing and Manipulation options are the heavy-duty
functions that you can use to design the placement of the controls on
your window. To access these options select Arrange from the

Save to KnowledgeBase...

User Triggered Methods.. .
System Triggered Methods. ..

Align Right k

Align Top
Align Boktom

Design menu. Tabhing Order

Horizontal Center
Horizontal Group Center

Calling up the Arrange Menu with the Right Mouse Button

Vertical Equal Spacing
Horizonkal Equal Spacing

The Arrange options can be called up by pressing your right mouse
button. This is a useful shortcut for calling up the Arrange cascading

Equal Width
Equal Height
Equal Size

menu when a control is selected. To call up the Arrange menu:

Adjust Size by Text

Set Fonk and Color, .

1. Select a control or group of controls.

Advanced Editing. ..

2. Click the right mouse button. The RMB menu will be displayed

Send to Back

where you have clicked on the window.

The following are the Control Editing and Manipulation options:

Run Function Definition | An advanced topic that will not be
introduced in this tutorial.

Align Left Aligns the selected controls to the left .
according to the left edge of the leading I E“ﬂg'
trol.
contro _ g)epl
Align Right Aligns the selected controls to the right Sotan
according to the right edge of the v
leading control. End
Align Top Aligns the selected controls according EC'"“
to the top edge of the leading control. 1
Align Bottom Aligns the selected controls to the

bottom edge of the leading control.

Places each of the selected controls in
the horizontal center of the suggested
Window's client area. To center several
controls that are located on the same

Horizontal Center

= . - Output

Application: ITUTOR - SubApplication: PADDPR. - Yiew: Design

=R

Run Function Definition. .. |

m' =3rujelc1#'
. e

Align Right: g

Align Top
Align Bottom

Harizankal Center
Hatizontal Group Center

Vertical Equal Spacing
Hotizontal Equal Spacing

Equal width 2
Equal Height C:

Equal Size

Adjust Size by Text

Set Font and Calor...,

Advanced Editing.. .

Send to Back

Save ko KnowledgeBase

Cut
Copy

Faste

horizontal line, use the Horizontal
Group Center option.

1

Horizontal Group Center

Places the selected controls (as a
group) in the horizontal center of the
suggested Window's client area.

Vertical Equal Spacing

Spaces the selected controls at equal
vertical distances.

Horizontal Equal

Spaces the selected controls at equal

Spacing horizontal distances.

Equal Width Resizes the selected controls to an
equal width, according to the width of
the leading control.

Equal Height Resizes the selected controls to an
equal height, according to the height of
the leading control.

Equal Size Resizes the selected controls to an
equal size, according to the size of the
leading control.

Adjust Size by Text Resizes the selected controls according

to the length of the text.

Set Font and Color

Change the font and/or color of the
selected control(s)

Advanced Editing

Additional editing features not covered
in this tutorial.

Send to Back

When the selected control is covering
other controls in the IDK, makes the
next control visible. Does not affect the
runtime.

Cut

Removes the selected control from the
GUI and places it on the internal
clipboard.

Copy

Copies the selected control and places
it on the internal clipboard.

Paste

Adds the internal clipboard’s contents
to the GUL

Control Manipulation via Keyboard Arrows

Use the keyboard arrow keys to move selected controls by single
units, or according to the grid lines when the grid is displayed.

JACADA STUDIO FOR ISERIES | 1
Walk-Through of the IDK Interface |7

Exercise 1 - Jacada Studio for iSeries

Your First Application

Objectives:

* To introduce the reader to the development process workflow

+ To familiarize the reader with the mechanics of constructing and executing of a very simple Studio for iSeries graphical program

+ To expose the reader to the wizard-driven design and deployment features and automated code generation capabilities of Jacada Studio

In this exercise you learn about the underlying structure that is common to all Jacada Studio for iSeries Applications. The topics in this chapter lay
the groundwork of understanding which you need before you can modify the look and feel of your new GUI Application. In this chapter, you
learn how to build a brand new Application, using the default Jacada Studio Knowledgebase which ships with the full version of the product. The
purpose of this exercise is to let you to experience the entire Jacada Studio workflow with the full default Knowledgebase. In following chapters,
you will use the predefined KnowledgeBase created especially for the ITUTOR Application provided for the evaluation version of the product.

For now, let’s see exactly what you can do with a bit of imagination, and the default Jacada Studio for iSeries environment.

You are here!
v

Your First

Tutorial Exercise e
3 IDK Walk-Through Application
Overview Exercise

Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project Work With
Exercise Projects Exercise

The major steps to this exercise are:

Window Design Specifications
Open the Jacada Studio for iSeries IDK
Create an Application
Create a Subapplication
Add GUI Components to the Window
Generate A Runtime
Compile Transferred Files
Ensure the Jacada Monitor is Active
Run Application with a Java Client

Run Application with an XHTML Client

=lojx

Application File Edic View Help

| 4]

Hello World!!!

BExit

|Warning: Applet Window

4

4

WINDOW DESIGN SPECIFICATIONS

The design specification for this window is to create a GUI window
with the text “Hello World”, add a button to Exit the application and
run a built Application in both the Java and XHTML runtime clients.

OPEN THE JACADA STUDIO FOR ISERIES IDK

If you are not already in the Jacada Studio development environment,
open the IDK interface. To open the Jacada Studio for iSeries IDK:

1. From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

CREATE AN APPLICATION

Applications in the IDK are created via the New Application Wizard.
An IDK Application consists of all Client and Server elements, as
well as information which is used to write the Host code.

1. From the File menu > choose New > New Application...

2. In the New Application Wizard, specify the following
Application properties:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

Application Name: FIRSTAPP
Language: English USA
Host Programming RPG_OPM
Environment:

Resolution: SVGA (800x600)

3. Click Finish to come out of the New Application Wizard.

* Note : Upon exiting the New Application Wizard, you are prompted to
start the New Subapplication Wizard, the next logical step in the
workflow. If you choose ‘Yes’, skip step number 1 in the next
section.

EXERCISE 1 - JACADA STUDIO FOR ISERIES

é Launch Internet Explorer Browser
Q Sametime Connect
‘ Sharteut to Add-Remave Pragrams

5 & N3 accessories

3 Microsoft Excel

" @ Documents * [microsoft word
% - ,] acrobat Distiler 5.0

ettings "

E s [} Adobe fcropst 5

8 @ Search v 5] Studio f

=3

b @ Help

E Shut Down,

i start

File:

New Application. ..
[=

Your First Application

0n

Jacada Studio
b far iSeries

ld -~ Jacada Server Administrator

" Jacada Server

Open 3
talmse spplication
Delete »

wironment

he host

x|
= Hatk
Canicel
Help

New Application Wizard - The Next Step

@ Mowe that vou have created a new application, the next step in the workFlow is ko create sub-applications.

w'ould ywou like to start the New Sub-application Wizard now?

I you choose "Ma", wou can later start this wizard by selecting "Mew..." from the "Subapplication” menu.

es R Mo |

4

4

CREATE A SUBAPPLICATION

The term “Subapplication” is used to describe the contents of an IDK
GUI Window. Each window is referred to as a Subapplication.
Subapplications consist of GUI Elements, Host Fields and the links
between them. In this step, you will create your first Jacada Studio
Subapplication with the BasicLayout Window Layout.

To create a new SubApplication:

1. From the Subapplication Menu > New...
or
Click the Subapplication Icon on the Standard Toolbar

2. In the New Subapplication Wizard, Specify the following
Subapplication properties:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

Subapplication Name: HELLOW
Popup Window: Unchecked
Window Layout: BasicLayout
Subapplication None
Description:

* Note : The Window Layout feature will be explained in detail in the
next exercise.

3. Click Finish to come out of the New Subapplication Wizard.

ADD GUI COMPONENTS TO THE WINDOW

In the IDK, GUI Components are referred to as ‘Representations’,
because they are the visual presentation of information that would
have been found in the host screen display. In this segment, we use
the Definitions Palette to add Representations and Fields stored in
the KnowledgeBase to our Subapplication. We will then use the
Window Fields Palette to View and Edit the Field properties and the
Window Components Palettes to View and Edit the Representation
properties.

EXERCISE 1 - JACADA STUDIO FOR ISERIES

Your First Application

"';_'E.':Jacada Studio for iSeries Application: SA

File Edit | Subapplication Y=« Options Uiy Help

LI - o —

Subapplication
Icon on Standard
Toolbar

\
_hiﬁ

‘wWindaw layout:

“WeblookBasicLavouk

Close
Properties...
Delete...
Save fs...

Apply.
Restart:

Previous
Text

Batch,..

Layauts...

Mext =

< Back

dadiy

‘WeblLookMenuLayout Caneel
Help
B x
®
1 Views k
Ir of —_— < Back |
& =
Cancel |
Design Help |
Test

EXERCISE 1 - JACADA STUDIO FOR ISERIES | 4
Your First Application

Add a GUI Component and Edit Control Properties T i

File Edt View Help

1. From the Definitions Palette, select the Label representation, and

drag it onto your Subapplication. [. e - Represenai®] |
. EHEEs|
2. Notice that when a Representation in the window is selected, it is o o B
X . abeltext o 2
subsequently selected in the Window Components Palette. R D DD 2]
i i Ik [}s i InpulFie\dDateMMDDm’Y :
3. In the Control Editing Section of the Window Components B o Comprcnts T DR rourae
Palette, change the following control properties, in the following P abelCheckBorTal
. 1B Stalic | LabelCheckBaiYad il
order: | | B window _ || LabelCheckBooorBlank .
i Arcelerators LabelComboB ox
. . s M%HSD P LabsllnputField
. L 1 | eftdenu = . LabellnputFieldD ateD DMy
Note : After you change any control properties, you must press A Lo A
ENTER for the change to take effect. -] DeMenu3 LabellnputFieldPassword
[1 =E Deftdenud . . LabellnputFieldPramptable
i E Deftdenus LI LabellnputFieldSpin
S nsi. Label0utputField ﬂ .
Text Header - Liow
Text: Hello World !!! oloeiL La"@
Bl Basic styles i H
Inmafcamta‘s - -&— Control Editing Section
Static Styles >
Use Separator: No
Font and Color >
Font >
Size: 22
Location >
X: 280 ation: ITUTOR - SubApplication: HELLOW - ¥
Y: 180 | Options Utility Help 4
: ow]+ 8= o3|
Size >
Wideh: 200
Height: 30

4. From the Standard Toolbar, click the Apply Design Changes
button.

* Note : Use the Apply Design Changes button to apply your changes to
the window.

|- =]

What your Window Should Look Like —

This is what your window should look like at the end of the last step.

Hello World 11!

*~

Add an ‘Exit’ Button

In order to gracefully terminate your runtime session, add an ‘Exit’
button to your Subapplication. To add the ‘Exit’ button:

1. From the Definitions Palette, select the ExitButton
representation, and drag it onto your Subapplication.

2. Manually place the ‘Exit’ button under the ‘Hello World’
representation.

Save Subapplication

Before Generating a Runtime, you should save your Subapplication.

To save your Subapplication:

From the Standard toolbar choose the [icon.

6. GENERATE A RUNTIME

The individual Subapplications are analogous to source code. You
compile the Subapplications into an executable in a process called
Generating the Runtime. In the IDK, Generate Runtime is a wizard
driven process. To generate a Runtime:

1. From the File menu > choose Generate Runtime...
The Generate Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

Runtime Type: ‘ Java and XHTML

EXERCISE 1 - JACADA STUDIO FOR ISERIES |5
Your First Application

=l x|

Fle Edi View Help

Hello World!!!

ombeBox
cle
. b b (B
@ :J .Em:% [& -
I
Id

Jacada Server Platform: ‘ Windows NT(2000) x86

Select the ExitButton representation, and drag it onto your
Subapplication.Manually place the ‘Exit’ button under the ‘Hello
World’ representation.

Application: FIRSTAPP - Subapplication: HELLI
File Edit Subapplication Wiew Design Options Uklity He

x| |HEow] o W

o | -‘iﬁ|F|HSTAPP
Save Subapplication

Use the Save button on your standard toolbar to Save your
Subapplication.

[File|
Mew 3
Open 3
Close Application
Delets 3

Application Properties. ..

KnowledgeBase. ..

Save Al Ctrl+s

Generate Runtime. ..

Run Application...

Exit

Generate a Runtime to compile your Subapplication.

I X
Select runtime types:
¥ Java @ k
< Back
[=HTML 4'
Cancel |
Help |

Choose both Java and XHTML runtime types.

EXERCISE 1 - JACADA STUDIO FOR ISERIES | 6
Your First Application

3. In the File Transfer screen, specify the following information, E x| @
then click Next: IV Transfer Files et > l
i Host: |<Host IF Address= < Back
Transfer files: <Checked> — Y — [Foave — |
r’ Login password: [tk I¥/Save Help |
o * Note : When checked, the “Transfer files” feature autgmatlcally Target lbrary: [FIRSTAPP
transfers the files created by the Generate Runtime process to
the appropriate Libraries / Objects on the host. If you don’t
check this checkbox, no connection to the host will be made and
no files will be transferred.
Host: <YourHostIPAddress>
Login User: <YourLoginUserNameOnHost>
Login Password: <YourLoginPasswordOnHost>
Target Library: FIRSTAPP
I} P , " ,
.’ * Note : Specify a target llbirary for your Apphcatml} files. If a library by
the name you specify does not exist, one will be created for you.
4. In the Specify Host Connection and Application Information pion
screen, specify the following information, then Click Next: Hast: |‘<H°St IP Address> Next =

Port number: |?666 (.) < Back

Host application
<YourHostIPAddress> % Default Custom Cancel

Initial program: [HELLOW - Help
Port Number: 7666 |]
Library list: IFIRSTF\PP JRCADA I

4 * Note : By default, the Jacada Monitor is set to listen on port 7666. If
this port is in use by another Application, is recommended that
you (a) bring down the service that is currently occupying port
7666 for the duration of this tutorial, or (b) type CFGJACMON
into your iSeries command line and press Enter. This invokes
the Configure Jacada Monitor utility. Use the Change function
to change the port that the Jacada Monitor listens on.

Host:

Pk

Default and Custom Host Application Buttons
The settings in the Host Application section change according to
whether you choose the Default or Custom radio button.

In this example, the Default settings are used. The Default settings
allow you to use the pre-configured CLWrapper that was created for
the purpose of this tutorial. The CLWrapper can be customized to
provide additional advanced capabilities (i.e. program calls) and the
Custom settings can then be used to invoke your customized
settings. For the duration of this tutorial, you will use the basic
CLWrapper by selecting the Default option.

4

4

4

Initial Program: ‘ HELLOW

* Note : This is the first program that is called during runtime.

Library List: ‘ FIRSTAPP JACADA

* Note : Specify the library list that will be set for the host session.
Include your Application Library and the JACADA library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process.
The Generating the Runtime dialog appears.

* Note . In this dialog, you can view the output regarding the status of the
Runtime Generation process. There is crucial information output
to this dialog, go over the output to see which files were
transferred to the host. Look for the message “Runtime was
successfully generated” at the end of the compilation process,
this is an indication that all is well and you can safely go on to
the next step.

6. Click Close to come out of the Generating the Runtime dialog.

Files Created By the Generate Runtime Process on
the Development PC

Look in the JacadaStudio\appls\<AppIName>\gds directory - 4
files were created on the development PC:

1. RPG_OPM.HELLOWSD - The DDS Physical File - Describes
the data structure of the records in the Subapplication. This file is
used as a source for Jacada’s Service Program. The structure of the
Jacada DDS File is based on the structure of Physical File DDSs
(PF) and does not contain the information found in Display File
DDSs (DSPFs).

2. RPG_OPM.HELLOWSP - The Parameter List Copybook -
Contains a parameter list containing control fields that are passed
by the Jacada Studio API from the end program to Jacada’s
Service Program.

Generating the Runtime |

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application

Library

ﬂGPL

LTEMP

Subapplications: HELLOW;

FIRSTAPP O FIRSTAPR 1™

Please wait.., Converting XML bo XHTML:

C:\Jacadastudiol JacadaFilesiutilsire13ibint java -classpath

C:\Jacadastudiol JacadaFilesiclasses; C:| Jacadastudiol JacadaFilestutisixmilxt|xt. jar; C:\ Jacadastudiol JacadaFilesic
|assesicst|jacadasy, zip;C:|Jacadastudiol JacadaFilesiutilsixml|xalant binlxml-apis. jar; C: Jacadastudiol JacadaFilesiu
tilshxmitzalanibinizalan. jar;C: 4 JacadaStudio! JacadaFilesiutilsyzmi| tidy! Tidy, jar; C:) JacadaStudiol JacadaFilesiutils|x
l\crimsonicrimsan.jar cst.xml.manager. ClisntManager C:\JacadaStudiol JacadaFilesiclasses C:iJacadaStudia

RHTHL was generated succsssFuly.

Runkime was successfully generated.

‘ 6 ,CIose I Fause | Efeal |

& ' JacadaStudio',appls',FIRST APP'.gds

J File Edit Wiew Favorites Tools Help |

FBack v = - | D search [Folders ®| FEQLY M) | Ed~

|
| Address [¢1\Jacadastudio|applsiFIRSTARRigds '/i\'j PG |J\

LD |

gds

RPG_OPM.HELLOWSD N\l
RPG_OPM.HELLOW/F
RPG_OPMHELLOWP
ShellPragram. RPG_OPM, HELLOWY

4

4

4

3. RPG_OPM.HELLOWSF - The File Specification Copybook -
This file declares each window / table as a special file. It links the
window / table DDS and the parameter list from the Parameter List
Copybook to the Jacada Service Program.

* Note : The dollar sign ($) is used in the name of the files generated for
window definitions. It will be replaced by a pound sign (#) for
files generated for table definitions.

4. ShellProgram.RPG_OPM.HELLOW - The Shell Program. An
automatically generated program that performs the mandatory
actions involved in displaying a Jacada Studio Subapplication.
This program should be added to by the programmer to implement
the business logic. For testing purposes, the window can be run
without any change whatsoever to the automatically generated
shell program.

* Note : Automatically generated shell program contains all you need to
test run an Application. The Read/Write statement in the
automatically generated shell program is very similar to the way
you Read/Write to a display file.

These are text files that can be opened with any text editor. Feel free
to open these files and have a look at their structure. IMPORTANT! -
do not change the content of these files.

Libraries Objects and Members Created by the
Generate Runtime Process

The first time that you choose to transfer the files created by the
Runtime Generation process to the host by checking the Transfer files
checkbox in the Transfer Files screen of the Generate Runtime
Wizard, the library structure in the diagram to the right is created on
the host in the Target Library that you specified. After the first time
that you choose to transfer files via the Generate Runtime Wizard,
each time that you Generate a Runtime, only the DDS physical file is
transferred.

CoMPILE TRANSFERRED FILES

Of the four files transferred to the host, only the DDS physical file
and the Program file ever need to be compiled. The File Specification
copybook and the Parameter List copybook are not compiled.
Furthermore, unless there is a change to the fields in the Subapplication,
there is no need to recompile the DDS physical file and the program file
on the host.

Compile the DDS Physical File, HELLOWSD file and the RPG
Shell Program., HELLOW.

* Note : Make sure the target library is in your library list.

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application

* This code was generated automatically by Jacada.
* Sub-Application: HELLOW

a Time generated: Tue Jun 25 17:13:55 2002

w

"

* Import the file specifications for the current window.
F/COPY HELLOWSF

* place other file specifications imports here.

»

* Import GDS E specifications

EACOPY JRPGSRC,GDSESPECS
* place your E specifications here.
»

* Import GDS I specifications
I/COPY JRPGSRC,GDSISPECS
* place your I specifications here.

w

* Import the parameters 1ist defined for the window.
C/CORY HELLOWSP

b

w

* start of main Toop.

w

"
* place your code for refreshing the window's data here.
"

* pisplay the window

[WRITEHELLOWE

C READ HELLOWE 99
"

* place your program logic here.
»

C SETON LR

End of main Toop.

]

C HINZSR BEGSR
w

* place your initialization code here.
w

C EMDSR

Okjects —W QRPGSRC

sty

QDDSSRC

<SANAME>$D (The DDS File)

<SANAME> (The Shell Program)
<SANAME>$F (The File Specification Copybook)

Ahvays Compile First !!
<SANAME>$P (The Farameter List Copybook)

*** GRAY = Members that must be compiled with each change to the program ***

8

ENSURE THE JACADA MONITOR IS ACTIVE
To ensure that the Jacada Monitor is active:
1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

RUN APPLICATION WITH A JAVA CLIENT

In order to test the runtime of your new GUI Application, you can run
the executable created during the Runtime Generation process from
within the development environment. You actually created two
clients during the Runtime Generation process: The Java client and
the XHTML client. We will run the Java client now through the IDK
wizard driven feature.

Running the Application is a wizard driven process and can be
achieved by:

1. From the File menu > choose Run Application...

2. In the Run Application Wizard, click Next to accept the
following default settings:

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http:/localhost:8080/FIRSTAPP.html

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and Your Default Browser window is opened to
the Jacada <AppIName>.html page.

F.’ * Note : If the server is still loading, you will receive a message box.
Answer “Yes” to wait for the server to load.

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application

Date: T/OT/Z2002 Configure Jacada Monitors
Time: 20:67:16
Type options, press Enter.
1=5tart 2=Change 3=Copy 4=Delete =Deta
Auto Max. Inacti:
Opt Monitur@Status Port Start Jobs Timeout
B JACADA Active ThBA Y 108680 10006
F3=Exit FS=Refresh Fe=Create Fl2=Cancel
File
Mew »
Open 3
Close Application
Delete]
Application Properties. ..
KnowledgeEBase. ..
Save Al Chrl45
zenerate Runtime...
MD
Exit |
e — @)
Select runtime type: [T——
% Java
 HTML = Back

Cancel

dadiy

Help

9

EXERCISE 1 - JACADA STUDIO FOR ISERIES | 1
Your First Application |0

4. Type your iSeries Username and Password into the appropriate B iustare Microsot intemet Eplorer
it | view Favorites Took Help
fields. ok - = - (D D) G| Qsearh [afFavories vedia (4| Bhe S :
Address [€] htp: ilacahost: B0B0/FIRSTAPP. il =] &5 “L\nks 5
5. Click the OK button to run your Java client Application. H
User name: il
Password [

0K

Please enter the required information, or leave as is to use default settings

=
[&€] Done T Local inkranct 4
~inix
. . Application File Edit View Help
The Finished Product | * - o

This is what your window should look like in a Java runtime.

Hello World!!!

BExit

\ FZ

|Warning: Applet Window

Close the Jacada Server

When you are done running your Application

B
: : : : Al .policy=C:~JacadaStudio“JacadaFilessclasses\jacadasv.polic .
1. Exit the Application and end your host session by clicking the tadios : 10 JacadaStudiowacadarilesne lagses
" .y . . . esutilssxmlscrinsonscrimson . jar;G: S|
f ilessutilsswebs\jetty\libNorg.morthay. jetty. jar SdacadaStudi
Exit” button in your runtime window Fil i 1o\webj 1ikb bay.j j Jacadastudi
= wehs, vlet . jar;C:S\JacadaStudio~JacadaFilesy|
.. . e 1 ssl. H ..Jacadastud:!.u\Jaca(.laFiles\utils\\-reb\je
2. Type quit in the Jacada Server command window to close the jJasper. jar io\JacadaFilestutilsixmlvxalantxalan -
Sul &St(a;;gels-sta te; dul
ELELE erver Module
Jacada Server. Copyright(CY 19972882 Jacada Ltd.
or Loading Jacada Server, please wait...

. Server regma” STARTED
Use the shortcut Ctrl+C and answer yes if a message appears. quite eo

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

EXERCISE 1 - JACADA STUDIO FOR ISERIES | 1
Your First Application |1

RUN APPLICATION WITH AN XHTML CLIENT TFie
Now, let’s run the XHTML client. XHTML is a reformulation of g‘;:'n :
HTML in XML. XHTML stands for Extensible Hypertext Markup Close Application
Language. For all practical purposes, XHTML is just like HTML. Delete b

When we run an XHTML runtime, we receive an HTML client. Application Properties...

knowledgeBase. ..

To run an HTML client: cave Al Tis
1. From the File menu > choose Run Application... Generate Runtime. ., :1
Exit |

2. In the Run Application Wizard, specify the following settings: B

Xl
Select runtime type: [T
e IE
Runtime Type: XHTML BT @ & Bk |
Cancel |
Port Number: 8080
Help |
Application URL: http://localhost:8080/FIRSTAPP-
xhtml.html

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and your Default Browser window is opened to

the Jacada <AppIName>.html sign-on window. [. @ x|
4. Type your iSeries Username and Password into the appropriate AL settins: _ hext > |

fields in the Jacada <Applname>.html sign-on window. Fert number: o = <gack_|
5. In the sign-on window, click the OK button to run your HTML caneel |

client Application. Help |

The Finished Product

This is what your window should look like at the end of the last step.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by clicking the
‘Exit’ button in your runtime window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application |2

File Edk Vew Favorites Tooks Help ‘

Gk - = - (D [A | Queach [HFavarites Freda (B S s

| BFIRSTAPP - - Microsoft Internet Explorer -0 x|

Address |£_‘|http 1localhost:B060/FIRSTARF-schtml. htrl =] pa |Jum =)

Hello World!!!

B e

‘€] Done [[B Cocalintranet

nd.exe - jacadasvy.bat

C:“\JacadaStudio>C:~JacadaStudio~JacadaFilessutilssjreldsbinsja
.policy=C:~JacadaStudi adaFilesxclassesnjacadasv.policy
Studio“JacadaFilescla ssJacadaStudioNJacadaFilesscl s
C:wJacadaStudionJacadaFilessutilsomlscrimsonscrinson. jar; G
Filessuatilsswebsjettyslib“org.morthay. jetty.jar;C:\Jacadaltudil
shwebrjettyslibhjavax. zerulet. jar; JacadaStudiosJacadaFiles
bscom.sun.net.ssl.jar;CisJacadaStu “JacadaFilessutilssweb\je
.Jasper. jar; Jacada8tudiosJacadaFilessutilss\xmlsxalansxalan.
dule.ServerStarter

Jacada{R> Server Module

Copyright(C> 1997-2082 Jacada Ltd.
Loading Jacada Server. please wait...

Server re g STARTED
quit o

1

Exercise 2 - Jacada Studio for iSeries

Create the Main Menu Window

Objectives:

+ To provide an exercise that replicates the menu application window in the prepackaged iTutor application

* To show one possible way to build a menu window and to explain how it works

¢ To introduce the reader to the power of pre-built, reusable graphical components

+ To explain the relationships between client-side graphical components and host-side navigation and process logic

+ Briefly examine host code to understand what was generated and what process logic must be added to complete the program

In this exercise, you create the first Subapplication in the [ITUTOR demo Application. You create this Subapplication in the IDK MYTUTOR

Application, prepackaged for you. This Application already contains four of the eight Subapplications in the ITUTOR Application. The other four
Applications you will build yourself, with a little help from this tutorial. This Application has a predefined KnowledgeBase, created especially for
this tutorial. The purpose of this exercise is to allow you to experience how easily and speedily a window can be constructed and deployed with a
predefined KnowledgeBase. After the window is built and deployed, feel free to go on to the next exercise. If you’re up for an extra challenge, go

on to the optional exercises at the end of the exercise, and build the KnowledgeBase components used in this window for yourself.

You are here!

v
: . Your First i Add / Edit . . "
Tutorial Exercise Fen) Main Menu Add / Edit Project Work With
Overview IRKWElISThICHGh Agggf;ts':" Exercise %?(Z(:::‘irsc: Exercise Projects Exercise
The major steps to this exercise are: e

Window Design Specifications
Open the Jacada Studio for iSeries IDK
Open the MYTUTOR Application :

INoTKWith
Create the PMENU Subapplication _

Add Representation to the Window

Generate Runtime and Transfer Files

About Host Code

Compile DDS and Program File on Host

Ensure the Jacada Monitor is Active
Run Application with a JAVA Client
Run Application with an XHTML Client

7]

\warning: Applat Window

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 2
Create the Main Menu Window

WINDOW DESIGN SPECIFICATIONS

The design specification for this window is that it include four
buttons that provide access to four other windows in the
Subapplication. A predesigned Window Layout will be associated
with the window. This Window Layout will provide the standard look
and feel of the window as well as an “Exit Application” button, that
will end the host session when pressed.

* Note : The Window Layout will bring the GUI elements that are used in
multiple Subapplications into the window. It will impose a GUI
standard by provide a standardized look and feel and it will
allow for the reuse of GUI elements.

OPEN THE JACADA STUDIO FOR ISERIES IDK $ 1acziasHHAEETES E S = kT

File ' Edit Subapplication View Options Utk Help

If you are not presently in the IDK, open the IDK by: W oalas
Close Application i open Library. ., 1

1. From your Windows Start menu > choose Programs > Delet y

Apglication Properkies, .

Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

KnowledgeEase.. .

Save Al 5 Open Application E x|
Select one of the available
Generate Huntine, . ﬁn& applications to apen,

Fun Applicatian, .

Exit

OPEN THE MYTUTOR APPLICATION

In order to open the MYTUTOR Application from within the IDK
interface: Z

1. From the IDK File menu > choose Open > Open Application.
The Open Application Dialog is invoked.

2. In the Open Application Dialog >
Select MYTUTOR from the Application Name List > Click OK.

CREATE THE PMENU SUBAPPLICATION

'REE’.‘:Jacada Studio for iSeries Application: MYTUTOR
File Edit Subapplication e Options Utiity Help

In this next step, you create the PMENU Subapplication in the
MYTUTOR semi-built Application. Make sure that the Application ® | 0 & [mvruton hﬂ I HEIE AR
combobox shows that you are in the MYTUTOR Application before

proceeding. In this exercise, you apply a prebuilt Window Layout

called Tutorial MenuLayout to your Subapplication. We will discuss

Window Layouts later in this step.

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 3
Create the Main Menu Window

To create a new Subapplication: [x]
1. From the Subapplication Menu > New... indow layout:
The New Subapplication Wizard is invoked. ;;?:Lzzout =
MenuLayaut < Back |
. icati i 1 1 Tutorial_BasicLayout
2. In the Néw .Subappllczftlon Wizard, specify the following Tuoria Basiclavalt @ cancel |
Subapplication properties: Tutr‘ial enuLa'-.-'u:.ut
‘WeblookBasicLayout Hel
WeblLookMenuLayouk Ll
W Add Mern Thems _l;l
Subapplication Name: PMENU 1] |»
Popup Window: Unchecked
Window Layout: Tutorial MenuLayout

Subapplication
Description: <none>

3. Click Finish to exit the New Subapplication Wizard. Button with Picture and Method Attached

P ¢ =lolx|
Elements Added to the Window by the ——
Tutorial_MenuLayout Window Layout ‘ ?

Did you notice the various elements that were brought into your
Subapplication when you selected the Tutorial MenuLayout Window Image with Text
Layout in the New Subapplication Wizard?

* Note : Keep in mind, the Jacada Studio IDK provides you with the abil-
ity to pre-define the Window Layout template for your own GUI —— /mages —— 3
look and feel.

Checking the Contents of the Window
|

Contralz

[Buttan

Check the contents of the Window Fields Palette to see the Window 8 gz:tz:g% Dé%PMENU

Fields brought in by the Window Layout. O Frame O JsTHSG
LB JSTACT

Check the contents of the Window Components Palette to see the
GUI components brought in by the Window Layout.

=l
Caption ﬂ
B Basic styles

Imitial capitak Mo
B ‘window styles ;I

*~

*~

5. ADD REPRESENTATION TO THE WINDOW

Representations can consist of one window component, or complex,
consisting of multiple window components grouped into one. In this
exercise, we drag the representation Tutorial_MenuOptions onto
our window from the Definitions Palette. This representation is an
example of a complex representation. It consists of four buttons
whose properties were predefined for this demo. When you are done
dragging the Tutorial_MenuOptions representation onto your
window, and positioning the buttons, you are ready to Generate a
Runtime, for your window is complete.

* Note : KnowledgeBase components created for this tutorial all have the
prefix “Tutorial_”. This is to allow you to easily distinguish
them from the default KnowledgeBase components that ship
with the product yet are not used in the tutorial.

Positioning the Menu Buttons

When dragged onto the window, the menu buttons are not perfectly
centered. To position the button group if all of the buttons are still
selected:

1. Click on the group of buttons.

2. Drag the buttons to the center of the window.

If the buttons are not selected, to select the buttons and position them:

1. Click on the first button to select it.

2. Shift+Click on each of the other buttons to add them to the
selection group

3. Position the buttons by Clicking and Dragging them to the center
of the window.

* Note : You can use any of the selection / manipulation options dis-
cussed in the IDK Walk-through section of the tutorial to select /
manipulate the buttons as you like.

Save Subapplication

Before Generating a Runtime, you should save your Subapplication.
To save your Subapplication:

From the Standard toolbar choose the [icon.

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 4
Create the Main Menu Window

Shaw: I_ALL_ = I

TutoriaI_MainBodyBolderFrameLef;I
Tutonial_MainBodyB orderFrameT of
Tutorial_Menu_BattomLeft
Tutorial_Menu_BottomBight
Tutorial_Menu_Lefimage
Tutorial_Menu_Rightlmage
Tutorial_Menu_TopLeft
Tutorial_Menu_TapRight
Tutorial_Menu_‘windowHeader

- Tutanal Menul ptions
Tutorial OKEButton
Tutorial_Output_Checkbox _I
Tutorial_ Output_Date

Tutorial_ Output_dateEndD ate
Tutorial_Output_dateStanD ate
Tutorial_OutputField

Tuterial PASRST Merlbem izt

Drag the representation Tutorial_MenuQptions onto your
window from the Definitions Palette.

T ST=E

Fie Edt View Help
Exit Application

"

" o

.
-D\%'[@A
4 - i
| Add Resolirces N
f
A) B2

‘Add Projects &

R

@%j_h

o

Click and drag the selected group of buttons to position them in
the center of the window.

Application: ITUTOR - SubApp|
File Edit Subapplication Wiew Design Ophions Ukliky Help

% Jacada Studio for iSeries

®| DR FPew F] e # 8

Save your changes by clicking the save button in the Standard
toolbar.

EXERCISE 2 - JACADA STUDIO FOR ISERIES |5
Create the Main Menu Window

The Finished Product — =
This is what your window should look like at the end of the last step. lii ' R i Aopication 3
What your window should look like after positioning the menu
buttons in the center of the window.
6. GENERATE RUNTIME AND TRANSFER FILES [File’
s »
Compile the Subapplications into an executable, and transfer the OE-:n 5
DDS physical files to the host via the Generate Runtime Wizard. The Close Application
Shell programs will not be transferred, since the host code has been Delete v
prepackaged for you and already exists in the MYTUTORIAL host Application Properties. ..
library. To generate a Runtime: knowlsdgeBase. .
1. From the File menu > choose Generate Runtime... The Generate Save Al QoS |
Runtime Wizard is invoked. Generate Runtime. ..)
2. In the Generate Runtime Wizard, specify the following Rl S
information, then Click Next: Exit
Generate a Runtime in order to compile your Subapplication
Runtime Type: Java and XHTML into an executable
Jacada Server Windows NT(2000) x86
Platforms: EE—— x
Subapplications to All f:ji;”ntime pest
Include: 7 s < Back |
Subapplications to All @ _conedl |
Process: Help |

Select both Java and XHTML as your runtime types in the
Generate Runtime Wizard.

4

4

3. Inthe File Transfer screen, specify the following information,
then click Next:

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 6

Create the Main Menu Window

Transfer files: <Checked>

Host: <YourHostIPAddress>
Login User: <YourUserNameOnHost>
Login Password: <YourPasswordOnHost>
Target Library: MYTUTORIAL

* Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIALO1) as the Target
Library.

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIALO1) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process. The Generating the
Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process; this confirms that you can
continue with the next step.

6. Click Close to come out of the Generating the Runtime dialog.

ABouT HosT CoDE

To allow you to run through this tutorial at a reasonable rate of speed,
the host code for the MYTUTOR Application has been prepackaged
for you, and was installed in the MYTUTORIAL library created on
the host machine when you installed this product. In a real-world
scenario, you would write your host logic in this step of the
workflow. Since the host code has been prepackages for you, there is
no need and you can go on to the next section.

x
IV Transfer files @ ’m
Host: |<HostIPAddress> pr—y - |
Login user: <lUzeriame > v Save cancel |
Login password: - ¥ Save Help |
Target library: IMVTUTORIAL
pation

Host:

|<HostIPAddress =
7666 E
Host application

% Default € Custom

Initial program: IPMENU - l Help
IM\"TUTORIF\L JF\CP\D% I

Port number:

Cancel

x|
Mext =
< Back
_concd|
I

Library list:

Generating the Runtime

Please wait,.. Conwerting XML ko XHTML:

Subapplications: HELLOW;

C:1]acadastudiol JacadaFilesiutils|re 1 31binljavya -classpath

tilshemltzalanibiny:zalan. jar; C:1JacadaStudiol JacadaFilesiutisyzmlitidy Tidy jar; C:1JacadaStudiol JacadaFilesiutils|x
mlcrimsanicrimson. jar cst.xml.manager. ClientManager CJacadastudiol JacadaFilesiclasses CiiJacadaStudio
FIRSTAPP O FIRSTAPP 1™

2HTML was generated successfully.

C:1)acadastudiol JacadaFilesiclasses; C\JacadaStudiol) acadaFiles\utistmi <t lxk jar; Cil JacadaStudicl JacadaFilesic
|lassesicstljacadasy. zip; C:\Jacadastudiol JacadaFilesiutils\xmilxalantbin|xmi-apis. jar; C: Jacadastudiol JacadaFilesiu

4

CompILE DDS AND PROGRAM FILE ON HOST

Verify that the JACADA library and the MY TUTORIAL library are
in your library list.

Compile the DDS physical file, PMENUSD and the RPG program
file PMENU in your MYTUTORIAL library.

* Note : If the FIRSTAPP application is still in your library list, make
sure to replace it with MYTUTORIAL.

ENSURE THE JACADA MONITOR IS ACTIVE
To ensure that the Jacada Monitor is active:
1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

RUN APPLICATION WITH A JAVA CLIENT

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window

Date: T/07/2002

Time: 20:a7:16

Tupe options, press Enter.
1=5tart 2=Change 3=Copy

Configure Jacada Monitors

4=Delete S=Deta

Inacti:
Timeout

Auto Max.

Opt Monitor Status Port Start Jobs

B J1ACADA Active ThRE Y 10006 10060

Fi=Exit FA=Refresh Fe=Create Fl2=Cancel

[File
Ty 3
Cpen 3
Close Application
Delete >
Application Properties. ..

KnowledgeBase. ..

Save Al Chrl+5S

Generate Runtime. .,

T (1)

Runtime Type: Java Exit
Web Server: Integrated HTTP Service
Application URL: http:/localhost:8080/
MYTUTOR.html
N
3. Click Finish to come out of the Run Application Wizard. el U G ois
The Jacada Server is activated and your Default Browser window F Java

is opened to the Jacada <AppIName>.html page.

< Back

" RHTML @

Caniel

daaiy

Help

7

4

4

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your Java client Application.

* Note : Jacada Studio allows you to customize the look of the sign-on
<A4ppIName>.htm! window. The example to the right shows a
customized window.

The Finished Product

This is how your window should look after running your Application
with a Java client.

IMPORTANT! - The only working button in this window is the
‘Work with Resources’ button. In the following exercises, you will
build the ‘Add Resources’, ‘Work with Projects’ and ‘Add Projects’
Subapplications. Only click on the ‘Exit Application” or ‘Work with
Resources’. Clicking on any other button will result in an error
message and a termination of your host session (much as it would if
you were working with DDSs).

* Note : If you clicked a non-working button go on to the ‘Close the
Jacada Server’section below and skip step number one.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by clicking the
‘Exit Application’ button in your runtime window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 8
Create the Main Menu Window

| 1TUTOR - Microsoft Internet Explorer -l x|
Fle Edt Wew Favortes Tools Help |
o - = - (D[] 4| Qoearch Favorites veda of | By b - 5
Address [&] hetp:/fiocahhost BOBOIITUTOR html =] Peo |[unks >
=
’f"dk @
=5
Studio for iSeries
User name I
Password:
(5)"
\"/
N\
‘ Please enter the required information, or leave as is to use default seftings |
|
/€] Done [[[& ocdlintranet 7
i
application Fle Edi View Help
INorkiwith
Add Resources
IAdd Projects Workiwith
Projects
\ o

|warning: Applet Window

StudiosJacadaFilesclasse
C:sJacadaStudiosJacadaFi I.Itll;\)(lTll\El rimsonhe
Filesutilsweb\jettyslibhorg.morthay. jetty. jar

rylet . jarsGisJacadaStudiosJacadaFiles™|
JacadaStudio~JacadaFiles>utils~websje

ac adastt-ldlu SJacadaFilessutilssxmlsxalansxalan.

rter

Copyright(C> 1997-2082 Jacada Ltd.
Loading Jacada Server. pleaze wait...

: STARTED

RUN APPLICATION WITH AN XHTML CLIENT

To run your Application with an XHTML client:

1. From the File menu > choose Run Application...

2. In the Run Application Wizard, specify the following settings:

Runtime Type:

XHTML

Port Number:

8080

Application URL:

http://localhost:8080/MYTUTOR-
xhtml.html

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and your Default Browser window is opened to
the Jacada <AppIName>.html page.

4. Type your iSeries Username and Password into the appropriate

fields.

5. Click the OK button to run your HTML client Application.

'’ * Note : Don’t forget to close the Jacada Server when you’re done.

[File
W=
Cpen
Clase Application
Delete
Application Properties. ..

EXERCISE 2 - JACADA STUDIO FOR ISERIES | 9
Create the Main Menu Window

KnowledgeBase. ..

Save Al s

Generate Runtime. .

Exit

Select runtime type:

 Java
% RHTML @

Mext =

< Back

Cancel

Pl

Help

4

N

Exercise 2 - Jacada Studio For iSeries

How It Works: The Main Menu Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next one. If you’d like to find
out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you ready?
Well, what are you waiting for?

Look for the ActionPerformed Method Attached to x|
the OnClick Event of the Menu Buttons

Buffer] Manager I

I Farmat] Events
To view the association between the menu buttons and their
associated Methods:

Button bype Basic styles
1. Double click on any one of the menu buttons. The Component ’7 @ Standard " Default ’7 M Tabstop [Initial caps,
Properties Dialog appears.

* Note : The Component Properties dialog automatically displays the
properties of the component that was double clicked.

2. Go to the Events Tab of the Component Properties dialog.

You can see that the ActionPerformed Method is attached to the @ x|

OnClick event of this component.
Buffer I Manager I Style I Format I

3. Click Cancel to come out of this dialog.

Event: |Onclick j

Aictivate method:

¢~ «Mone> -
E_!- General Methods
- AddButton_OnDigplay
- AiddE ditB utton_OnClick
- AddEditB utton_OnDisplay
- AddEditB uttonS et Text_ OnDigplay
- AiddU pdateB uttonS et Text_OnClick
- ErrarFocus_OnDisplay LI

Events

Many graphical controls have Events associated with them. Events can be thought of as logical associations to physical actions such as the
clicking of a mouse on a button. When a Pushbutton is physically clicked at runtime, the graphical client can respond to a logical event called
“OnClick” and do something with the knowledge of that action. Even the displaying of a control by the client runtime code itself is a physical
action that has an "OnDisplay" event associated with it. Methods are used to define the actions that are performed when an Event is sensed.
Consequently, a Method can be triggered by the OnClick event that occurs when a user clicks on a control such as a button.

Window Component Names

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window

In the iSeries green screen world, keyboard actions are relatively limited — 24 Function Keys, Enter, Help Home, Page Up, and Page Down. These
“events” are automatically interpreted and managed by the operating system, and interactive programs are typically notified of keyboard activity
via Indicators. When a Function key is pressed, the operating system is notified of a keyboard Fkey 'action', strips off the FKey number, and sets
an associated Indicator that your program can respond to. Although Jacada Studio for iSeries fully supports Indicator activity, we have also
provided an alternative that allows your programs to easily recognize graphical events in a fashion very similar to Indicators. We provide a
Method that is associated with the OnClick event for graphical push-button.

By using a Prefix/Suffix syntax when naming pushbutton controls a
developer can put this Method to work to send an action notifier back
to his RPG or COBOL program. The naming syntax for a pushbutton
control is Prefix “Button” and Suffix “Action”. The Suffix or
“Action” portion may be fairly generic such as “Update”, “Add”, or
“Exit”. The button name would then be ButtonAdd, or ButtonExit.
A more specific implementation is used in the PMENU pushbuttons
where each button action identifies a function request.

The button name ButtonWWR is automatically decomposed by the
ActionPerformed Method to send a value of “WWR” back to the
host menu program (PMENU) in a hidden field called JSTACT. The
menu program can then initiate a call to a program based on logic that
evaluates the content of field JSTACT. In the case of the PMENU
program the “Work With Resources” program is called when the
value of JSTACT is equal to "WWR". (The “action” field JSTACT
is predefined in the Jacada Studio Knowledgebase and is
automatically included on every Jacada Studio for iSeries shipped
window layout as a hidden field.)

Values get passed to the host program during runtime in the following
way:

1. The ACTION string (WWR) of the button’s component name is
extracted by the ActionPerformed Method when an OnClick event
occurs.

The ActionPerformed Method:

2. Updates the VariableAction variable with the value of the
ACTION string (WWR).

3. Passes the value of the ACTION string (WWR) from the
VariableAction variable to the JSTACT field in the DDS Physical
File (the buffer).

4. Sends value WWR in JSTACT to the RPG code.

Client

Server

Host

C*
C*

C*
C*

C*

Exit Not Clicked
"Change original shell which had IFEQ"
JSTACT IFNE 'EXIT'

Work with Projects Clicked
JSTACT IFEQ 'WWP'
CALL 'PPROJ'
MOVEL*BLANKS
ENDIF

JSTACT

Work with Resources Clicked
JSTACT IFEQ 'WWR'
CALL 'PRESO'
ENDIF

ButtonWWR

@ v OnClick

ActionPerformed
Method

@ v Update

Window Component
VariableAction = WWR

@ * Update

Window Field
JSTACT = WWR

@ * Update

RPG Code
JSTACT = WWR

1
1

Exercise 2 - Jacada Studio For iSeries

Optional Exercises: The Main Menu Window

If you feel comfortable with the level of detail provided in the previous exercise, feel free to skip this exercise and go on to the next one. If you’d
like to “break it down” some more - to work with the “nuts and bolts” a little bit - how about building the menu items yourself? In this section you
learn all of the steps necessary to turn the simple representations in the default KnowledgeBase that ships with the product, into complex
representations like the Tutorial MenuOption representation used in the previous exercise. Are you ready? Well, what are you waiting for?

The major steps to this exercise are:

Delete the Buttons that Were Inserted by the
Tutorial_MenuOption Representation

Drag a Simple Button Representation onto Window
Set Button Component Name

Set Button Style Properties

Copy Paste Button

Position Buttons in Center of Window

Generate Runtime and Run Application

DELETE THE BUTTONS THAT WERE INSERTED BY
THE TUTORIAL_MENUOPTION REPRESENTATION

Simply select each of the buttons on your window and press the
Delete key on your keyboard to delete the items. When the “Delete
Selected Controls?” message appears, click Yes.

DRAG A SIMPLE BUTTON REPRESENTATION ONTO
WiNDOW
We will first create the “Add Resources” button, the top left button in

the button arrangement. From the Definitions Palette, drag a simple
Button representation onto the window.

SET BUTTON COMPONENT NAME

In the Window Components Palette, set the button component name
property, to give the button an explicit name that will be used to call
the button from the host code.

1. Select the added Button in the window. The added button §
automatically given component name will subsequently be selected
in the Window Components Palette.

2. Right Click on the button name > Rename

. SR VOTK with
Add Resources
” el

ok with
. Projects

Add Projects’

4
=[EN=E)

CancelButton

|
+ Controls
EButton
Button00?
Buttan002

= nom Butorbs | Modify,., ENTER
: BUEDF: Frame Delete DEL

H Wariablehs
o LA VarisbleMe Jump to definition.,. F&

N

*~

* Note : 1f the Window Components Palette is behind the window and
being obscured by it, use the F12 function key on your keyboard
to bring the palette to the top of the window. The F12 function
key brings all palettes to the top layer of visible items.

3. Type ‘AR’ in ALL CAPS after the button component name to
create the component name ButtonAR

4. Verify that the correct button has been renamed by selecting the
button component name that you created ButtonAR in the
Window Components Palette. This action will consequently select
the button representation in the window.

4. SET BUTTON STYLE PROPERTIES

In the Component Editing section of the Window Components
Palette, set the button style properties

Text: <none>
Button Styles:

Squared Corners Yes
Size:

Width: 230

Height: 230
Images:

Standard \JacadaStudio\appls\mytutor\Bitmaps\

top_left.jpg

Placement:

Bitmap Relative: On Top

5. CopPY PASTE BUTTON

The easiest way to create the other three menu buttons without again
setting all the component properties that you set in the previous step
is to copy paste the button that you created. You can use your default
windows shortcuts of:

Ctrl+X Cut

Ctrl+C Copy
Ctrl+V Paste
Ctrl+Z Undo

Or you can Right Click on a button and choose Copy or Paste from
the Design View Right Mouse Button Menu.

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window

Ml ¥indow Components |
] Buttan -
A Button01
O Buttonl2 d
B: EuttondH @
O BuitonEXIT
1O Frame
L) S Variabledction
mBytore -

ﬂ WariableMeszage
LE window
P =]

: Text Buttan -
|8 Basic styles

Initial capitals | No
Change the button’s component name to ButtonAR. Select the

renamed component and verify that the correct button
component is selected in the window

=1olx]

Exit Application S}

File Edit

.'{,i
N

- AR
y 4 - -
i

222
124
230,230

Lol Lo

—
M%ﬂ

This is what you should see after having set the Button Style
properties.

Run Function Cefinition. ..

Align Left
Align Right
2lign Top
Align Bottam

Use the Window shortcuts to copy paste components to and
from your screen or use the Right Mouse Button Menu

N

*~

*~

Change Component Names and Image Associations

Make sure that you change the images associated with the new
buttons and their component names as follows:

ButtonWWR top_right.jpg
ButtonWWP bottom_right.jpg
ButtonAP bottom_left.jpg

6. POSITION BUTTONS IN CENTER OF WINDOW

Position the buttons in the center of the window using the Control
Editing and Manipulation Options discussed in step 12 of the IDK
Walk-through section of this tutorial.

7. GENERATE RUNTIME AND RUN APPLICATION
You are done! Do you want to run your Application? It’s easy:
1. Generate a Runtime, transferring files to the host.

2. Make sure the Jacada Monitor is Active.

3. Run the Application.

How did you do?

* Note : Did you remember to close your application and the Jacada
Server?

It is not necessary to recompile the DDS physical file and RPG
program on the iSeries unless a change was made to either (a) the
number of fields in the IDK subapplication or (b) the RPG program.
Although it is not necessary to recompile in these situations, we
recommend you recompile upon each change to the subapplication
for the duration of this tutorial, until you are thoroughly acquainted
with the workflow. Recompiling your DDS physical file and RPG
program on the iSeries with every change to the subapplication will
spare you unnecessary troubleshooting later.

* Note : If you did not exit your browser since the last time you ran a
runtime, you may receive a “Version Mismatch” message. In
this case, hold down the Control key on your keyboard while
clicking the ‘Refresh’ button in your browser window to clear
your browser’s cache.

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window | 4

]
- Contrals =
-] Button

[EButton0i

- Button0nz

- ButtondP

- ButtoraR

S ButtarEXIT

- Buttoriw/ WP

- Buttoriw/wF j

Component
names of the
four menu
buttons

Change the component names of the new buttons

&} Enterprise integration for mainframe and AS/400 - Microsoft Intd

J File Edit ‘View Favorites Tools Help

J sHBack o= o @@Jﬁ | Qlsearch [EFavorites £ Media

J Address I@ http:,l',l'www.jalRefresh .'II

Leading Legacy Integration &

Home || About Us .

b mk 1 0n [T

Hold down the Control key on your keyboard while you click
the ‘Refresh’ button in your browser window to clear your
browser’s cache if you receive a “Version Mismatch” error
while trying to run a runtime.

1

Exercise 3 - Jacada Studio for iSeries

Create the Add / Edit Resource Window

Objectives:

To provide an exercise that replicates the Add/Edit Resource window in the pre-packaged iTutor application
To build a window in which new data can be Added or existing data can be retrieved and Updated
To examine dynamic GUI display alternatives to Indicator driven Display File behaviors
- Conditional runtime display driven by client events (based on program mode of Add or Update)
- Resource # show/hide depending on mode
- Update or Add button displayed depending on mode
Passing variable text display values from a host program
To gain an understanding of the relationship between fields and their graphical representations
To gain a better understanding of client-controlled application activity as an alternative to host-controlled application activity
- Data validation at the client or server instead of the host
Using a graphical link control to launch an external URL in a separate browser frame

Briefly examine the host code to understand what was generated and what process logic must be added to complete the program

In this exercise, you create the Add / Edit Resources window of the ITUTOR Application. Your MYTUTOR Application should already contain
five of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu Window that you created in the
previous exercise. This window is used both as an Add Resources window and as an Edit Resources window, depending on the entry point chosen
by the user. The purpose of this exercise is to expose you to the use of server logic as a means of controlling conditional variations in the interface,
and as an alternative to driving those variations from the host using Indicators and DDSs. The Method implementations in this exercise are good
representations of this capability. The value idea is to simplify host business logic by reducing presentation-oriented coding that could be
managed in the presentation layer. In this exercise, you will experience how easily and speedily a window can be constructed and deployed, with

a predefined KnowledgeBase.

You are here!

X
: . Your First . Add / Edit . . .
Tutorial Exercise e Main Menu Add / Edit Project Work With
Overview IDK\Walk=Through AEng;ts'gn Exercise ':I{E?(se‘:gi?: Exercise Projects Exercise

*~

The major steps to this exercise are:

1. Window Design Specifications

2. Create the PADDRE Subapplication
3. The Window Header

4. Add Fields to the Window

5. The “Resource #” Representation
6. The Add and Update Buttons

7. Error Handling

8. Generate Runtime and Transfer Files
9. About Host Code

10. Compile DDS and Program File on Host
11. Run Application

1. WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication interface,
between when it is accessed through ‘Add’ mode and when it is
accessed through ‘Edit” mode. The differences are:

In ‘Add’ mode:
1. The window header says “Add Resource”.

2. There is an ‘Add’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

In ‘Edit’ mode:
1. The window header says “Edit Resource”

2. There is an ‘Update’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

3. There is a “Resource #” representation.

* Note : You will reuse GUI elements from the PMENU (Main Menu)
window in this Subapplication. You will do so via the Window
Layout feature.

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 2
Create the Add / Edit Resource Window

=
Application File Edit Yiew Help
A - — ‘Add Resource’ Header | ja

Contact st

First Name

Last Name
Title ~

Comments |

‘Add’ Button
<@ D

I]

|Warning: Applet Window

The final product of your efforts in this exercise. The look of the
PADDRE Subapplication, when accessed through ‘Add’ mode.

® _ITUTOR - [] o [=]

Application File Edt View Help

= -— ‘Edit Resource’ Header Sk

iContactWst

R“num“ nn -——— ‘Resource #

Representation

FirstName [Jay
Adams
Title Menager =]

‘Update’ Button

v

We e
| [

|warning: Applet Window

Last Name

Comments

The final product of your efforts in this exercise. The look of the
PADDRE Subapplication, when accessed through ‘Edit’ mode.

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 3
Create the Add / Edit Resource Window

CREATE THE PADDRE SUBAPPLICATION

In this next step, you create the PADDRE Subapplication in your
MYTUTOR Application. In this exercise, you apply a prebuilt

Window Layout called Tutorial BasicLayout to your Subapplication. . Jacada Studio for iSeries E =lolx|
W Edit Subapplication Yiew Options Utility Help
2 A | 3| 5 o | & B
Lo Ol Geeeim. p
Open the IDK and the MYTUTOR Application 4| e (©)
Application Properties. .
To open the IDK interface and the MYTUTOR Application: PR
. " zl
1. From your Windows Start menu > choose Programs > ;ne:la P e o S
Jacada Studio for iSeries > Jacada Studio for iSeries Run fpplcation. . e -
The Jacada Studio Interface Development Kit (IDK) is invoked. Ext =
2. From the IDK File menu > choose Open > Open Application. <3>
The Open Application Dialog is invoked.
3. In the Open Application Dialog > Select MYTUTOR from the 4
Application Name List > Click OK.

Create the PADDRE Subapplication

1. From the Subapplication Menu > New ... The New
Subapplication Wizard is invoked.

I x|
2. In the New Subapplication Wizard, specify the following Windaow layout:
o . Mext =
Subapplication properties: Mo
BasicLavout
Menulayout < Batk |
ko asicLayouk
Subapplication Name: PADDRE Tutorial_BasicLayoutiithTable @ Lcell
Tutarial_MenuLayout
wieblLookBasicLayout Help |
i . wieblLookMenuLayout
Popup Window: Unchecked penL o el avout =
4 3|

Window Layout: Tutorial BasicLayout

Subapplication
Description: <none>

3. Click Finish to come out of the New Subapplication Wizard.

I%M_ =lolx|
Leveraging Common GUI Look Between Layouts :)
Do you remember the Window Layout that you applied to the Main T ?
Menu window in the last exercise? Did you notice the similarities

Image with Text Frame

between the Window Layout used in the last exercise and the
Window Layout used in this one? The Window Layout feature allows
us to leverage the common look between Window Layouts by re-
using elements from one Window Layout in another. You can also -—— I/mages — =
modify existing Window Layout templates to enhance the

functionality and GUI look between windows.

In the Tutorial_BasicLayout Window Layout applied to this
window, a ‘Main Menu’ button, ‘Back’ button and link to the Jacada
Website were added to enhance the functionality and GUI look of the
window.

Elements added to the Window by the
Tutorial_MenuLayout Window Layout

Image with Text

ok en i
Y Jucd

* Image

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 4
Create the Add / Edit Resource Window

Link Control

Contact Us!

Frame ¢

Did you notice the various elements that were brought into your ol , Frame
licati b lected th al . ndl ‘Main Menu
App 1ca't10n when you se ec'te .t e Tu'torza " BasicLayout Window Button ‘Back’
Layout in the New Subapplication Wizard? Button
-~— /mage \
e
Checking the Contents of the Window
[Window ¢ x =

Check the contents of the Window Components Palette to see the e o 2 [
GUI components brought in by the Window Layout. 8 Butond01 o

))) 53 Batonbia B JsTMSE
Check the contents of the Window Fields Palette to see the Window o FOHEAD ~B8 FOHEAD

O Frame

Fields brought in by the Window Layout.

: L) Variabletction
wfA WaniableMessage LI

FYI: The Link Control

A Link control was placed in the upper right corner of the window when you applied the Tutorial_BasicLayout window layout in the last
step. This link control has the Jacada website defined as a resource and will take the user to the Jacada website when he clicks on the link
during runtime. The link representation can have an image attached to it, or it could just be plain text. This link control was defined globally
in the KnowledgeBase, so that it could be used throughout the Application via the window layout.

In Jacada Studio, links may be used as URL Links or as Event Links. Event Links are controls that activate the IDK OnClick event. URL
links are controls that points to an Http resource. When URL links are pressed they perform an action that is determined by the resource
type. Some Examples: Open an HTML Page, Show an image in a separate window, Send e-mail, Download a File, Open a Word Document.

*~

*~

3. THE WINDOW HEADER

This example is to show you how a common behavior can be
controlled. We defined the text that appears in the header in the host
code, and passed it to a field attached to the window header
representation. Let’s have a look:

1. Double click on the Window Header representation that was
brought into the window by the Tutorial BasicLayout window
layout. The Component Properties Dialog appears.

* Note : In the Style Tab of this dialog, you can see that this component is
just a simple button with an image association and the text
“Window Header”. We will override this text setting via the
RPG code in the host program. Check the Events Tab and you
will see that there is no Method associated with this control.

2. Go to the Buffer Tab.

3. View the connection between the window component and the
FDHEAD field.

* Note : This connection will be used to transfer the appropriate text to
this header, depending on the mode in which this window is
accessed.

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window

File Edit ‘iew Help

Button Component

] Manager I Skyle
IV Connect ta field in recard ‘PADCRE
Fed——————
T FOFMAM
FDLMAM

Double Click a control and go to the Buffer Tab to see and edit
the connection between a window component and a field.

Resource &

- —

Button Component ZI

Buffer] Manager I

[%I Format] Events

Button bype Basic styles
{ = Standard " Default { I™ 1abstop T Initial caps.
Text: .
indow

Wi
“indow Header =: ,
Header’ text

Font & Color...
Associsted Images...
Placements. ..
Special Effects...
i~ Standard image file

Iappls\itutor\bitmans\ton‘]Dg 4—33'— Image

Association
11

rButton styles
¥ Transparent

¥ Reject Focus
[V o button border
IV squared corners

I Mo kext

In the Style Tab of this dialog, you can see that this component
is just a simple button with an image association and the text
“Window Header”

Button Component

Buffer I Manager] Style I Farmat I

Event: IOnCIick j

Activate method:

~[<None> No Associated
General Methods -« Method
i+ Current Library Methods ethoas

L. Current Subapplication Methods | |

Check the Events Tab to see that there is no Method
associated with this control.

*~

You can also view the connection between the window component
and the FDHEAD field:

1. Select the Window Header component in the window.

2. Look at the Window Fields Palette. The FDHEAD field is selected.

* Note : The association between a component and a field can only be
modified through the Component Properties Dialog.

Now, let’s see the code.
1. Open the PADDRE program file on the host.
2. Notice the ‘Window Title’ I specifications.

3. Notice the section that populates the window title.

4. ADpD FIELDS TO THE WINDOW

Until now, when you needed to add a Representation to the window,
you dragged it from the Definitions Palette, which was set to
Representation Definition View. In this step, you will add
Representation Definitions to the window by dragging fields onto

your window from Field Definitions View of the Definitions Palette.

You will then choose the representations associated with the field
from a “Short List”.

Click the Field Definitions View Icon in the Definitions Palette to
see the list of fields defined in the KnowledgeBase.

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window

File Edit “iew Help

@ =
04
B FADDRE
LB UsTACT

LB ISTMSE
FOHEAD

B9 FORESN

Resource &

B JsTROC
L cnunne

Select a control and look in the Window Fields Palette to see
the connection between a window component and a field. You
cannot modify the connection from the Window Fields Palette.

* Place your I specifications here L
* Window Title
I ! Edit Resource' C ETITLE
I @ ! Add Resource' C ATITLE

hhkkkkkkkkkkkhk ko khk ok kkkkkkkkkkkkkkkkkkkkkkkkkxkkxkxkx

* Populate Window Title

hhkkkkkkkkkkkkkhk ok k ok khkkkkk ko kkkkkkkkkkkkkxkxkxkx

© MODE IFEQ 'EDIT'

© MOVELETITLE FDHEAD
C ELSE

© @ MOVELATITLE FDHEAD
© ENDIF

Sample Code taken from the program logic written for the
PADDRE Subapplication of the ITUTOR application. Code
populates FDHEAD field.

=
=IEE=NE)

FOAC Eleld Definitions =
FDOED

FDEILL

FODERT

FDEDAT . s
FOFMAM Fl‘eld Definition
FoHEAD View Icon
FOLMAM

FObdaIL

Click on the Field Definitions View Icon in the Definitions
Palette to see the list of fields defined in the KnowledgeBase.

EXERCISE 3 - JACADA STUDIO FOR ISERIES |7
Create the Add / Edit Resource Window

To add the remaining Representations to your Subapplication, refer to

the table below: D "7 " Resource # Output
| FistName [
Window Fields Representations m—— :
3] EETEE
oW ork Lisl hd Elﬁlddl
FDRESN Tutorial_Label OutputField PN SR B v () e T
@ Tutorial_OutputField LCEII Eggﬁl_f[
FDFNAM Tutorial_Label InputField | RN reo || .| Foveer
R | et
FDLNAM Tutorial Label InputField 1 ' %@
. . FowaDE
FDTITL Tutorial Label Combobox_Title 1] 3] FDPCOM
FORMAM
. . '_ ST TT 54 EALLELLE
FDRCOM Tutorial Label InputField R

1. Drag the fields in the Window Fields column onto the window,
from the Definitions Palette.
The Select Field Representation Dialog appears.

2. Select the representation in the Representations column, from the
_Short List_in the Select Field Representation Dialog.

3. Click OK to come out of the dialog. Your representation is added
to the window. It is associated with the field that you dragged from
the Definitions Palette.

FYI: The Field Driven Design Concept

In the green-screen world, the appearance and behavior of a field on a Display File are controlled with Attributes and Indicators.
Variations in appearance are fairly limited to text-oriented attributes like coloration, blinking, reverse image, etc. Additionally, a field may
have variable behavior such as being an Output Only field under one condition and Input Only under another circumstance. Each time a
new Display File is created, the display attributes for any particular field must be redefined. Some Field properties such as length, data
type, and Field Text or Column Headings can be standardized by their definitions in Physical File DDS, but most display properties must be
recorded in each Display File DDS, which is not only tedious but opens the application to inconsistencies among interfaces.

Jacada Studio for iSeries has a simpler, more consistent approach for allowing fields to be graphically “represented” in various fashions at
different times in an application. This concept of representation not only allows full exploitation of the wide range of appearance and
behavior permutations available in the graphical world, but also supports the enforcement of consistent graphical standards at the field
level. For example, a single field may be used at different times in the application as Input Only, Output Only, or Both. Similarly, a field may
be graphically represented at different times by a Check Box, a Combo Box, or a Radio Button on Input, and a Static Control with a large,
red, bold font on Output. By associating a field with its most often used representations, and storing these associations in the
Knowledgebase, a developer builds a collection of standard representations for each field that can be rapidly reused instead of re-defining
them for each window. We call this collection of most often used representations for any given field its 'short list"

* Similar to the Text or Column Heading properties in PF DDS, Jacada Studio can assign a standard Label at the field level and implement
that Label consistently in a field's short list of representations.

*~

*~

Arrange the Position of the Added Representations

Arrange the position of the added representations according to the
image to your right. For more information on control manipulation,
please refer to the IDK Walk-through section of this tutorial.

Add Variable Representations to the Window

Most representations have a visible control on the window. In this
step, add the Variable Representation Definitions in the table below
to the window by dragging Window Fields onto your window from
Field Definitions View of the Definitions Palette. Then, choose the
Representations associated with the field from a “Short List” of
favorites. Drag the following fields onto your Subapplication
window:

JSTFOC

Tutorial Variable Focus

FDMODE Tutorial Variable Mode

* Note : When you drag these fields onto the window, it will seem as if
nothing has happened, and no representation will appear. This is
because these fields are attached to hidden variable
representations.

To make sure that these fields were added to the window: Check that
the fields JSTFOC and FDMODE reside in the list of fields in the
Window Fields Palette. Check that the VariableFocus and
VariableMode variables exist in the list of window components in the
Window Components Palette. (they will have an icon with a picture

of a ghost)

* Note : See the ‘How It Works” section at the end of the exercises for a
detailed explanation of the runtime behavior between client,
server and host.The VariableFocus representation connected to
the JSTFOC field is explained in the next exercise.

5. THE “RESOURCE #’ REPRESENTATION

According to our project requirements, the Resource Number
controls must appear on the window if it is accessed in Edit mode,
but not if it is accessed in Add mode. Let’s use a show/hide Method
and the FDMODE field again to control this interface variation.

EXERCISE 3 - JACADA STUDIO FOR ISERIES |8
Create the Add / Edit Resource Window

B ioix|
Fle Edt View Help
I Contact Us!

Resource # . Out;?ut .
FirstName [
Last Name ,7

Comments |

D D

Arrange the position of the added representations like this.

Window Fields E

0 o3

Window Components 4|

¢ LABL StaticO03

AEC Sta_tlc[l[ld _ B FDFNAM
S\ Vanablefction B FDLMAM
B\ VaniableFocus <— J g FDTITL
. FDRCOM
ﬂ ‘Vanabletezsage 5 FDMODE ~<—
S\ VanableMode --— B JSTFIC <a— Z|
- HE window hd Hame JSTECT &
Tvpe AlphaMurmeric
| O —

Check the contents of the Window Components and Window
Fields palettes to ensure the variable representations have
been added to your Subapplication.

The Static S % Frame002
Link
Control —> !:Xesn{rce #:E AB o
ABC StaticO01
T L - ABC Gratic02
First Name: I_ LI D e LI
- - . Text Resource #: ﬁl
. Alignment Left
Last Name: l_ B Basic styles =l

H= FDRCOM

x

. -HT FDLMAM
Resource # =3u|.ut= ! - =
: : SR g -

¢ -[E FOTITL

. ¢ O Frame

P L Framanii =
Test Dutput -
: Aligrment Left =

The Output
Control

First Name

Last Name

The Static and Output controls that make up the ‘Resource #
representation.

4

4

The “Resource #” representation that we added to our window
consists of two controls: The Static control (with the text “Resource
#”) and the Output control (with the text “Output”). The condition of
whether the “Resource #” controls are hidden or displayed is
according to the mode you are in.

The Tutorial_HideShowControlBasedOnMode Method attached to
the OnDisplay event of both components of this representation,
checks the value of the VariableMode variable (updated with the
value of FDMODE), and then hides or shows the control based on its
value. The value of the FDMODE field is determined by host logic.

To connect the “Resource #” representation’s Static component to
this Method:

1. Double click the static component with the text “Resource #” in
your window. The Control Properties Dialog appears.

2. Go to the Events Tab.
3. In the Events combobox > select the OnDisplay event.

4. Select the Tutorial _HideShowControlBasedOnMode Method
from the General Methods tree.

5. Click on the Link button to link the Method to the OnDisplay
event of this control.

6. Go to the Manager Tab.
7. Check the Runtime data flow checkbox.

* Note : You must check the runtime data flow checkbox because there
must be data flow from the host to the server in order for the
method that performs the hide/show according to the value of
the FDMODE field to update with the value of FDMODE from
the host code during runtime.

8. Click OK to come out of the Control Properties Dialog.

To connect the “Resource #” representation’s Queput component to
this Method:

1. Double click the Output component in your window. The Control
Properties Dialog appears.

2. Go to the Events Tab.
3. In the Events combobox > select the OnDisplay event.

4. Select the Tutorial_HideShowControlBasedOnMode Method
from the General Methods tree.

5. Click on the Link button to link the Method to the OnDisplay
event of this control.

6. Click OK to come out of the Control Properties Dialog.

* Note : The runtime data flow checkbox of this component is checked
by default.

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 9
Create the Add / Edit Resource Window

Static Component

Buffer I Manager I Skyle I Format I Events

7N
Event: IOnDispIay ‘ 3 ’ j
utorial_HideShowColumnB azed0nBuntimePlatform
utorial_HideShowControlB ased0nMode |

utorial_HideShowControlB ased0nRuntimePlatform
utorial_ShowDetails_OnClick

Activate method:

Static Componenk

Buffe@ Manager I Skyle I Format I Events

Runtime data flow:

Ed—l‘ J}S-r

Screen Manager window
Wariable
Mame: IStatic j
Read data From INI file: INone j
Static Component
Buffer I Manager I Skyle I Format I Events

A~
Event: IOnDispIay ‘ 3 ’ j

Activate method:

Tutarial_Hide5howColumnB azed0nRuntimePlatform
-{Tutorial_Hide5ShowControlB asedOnMode |
- Tutorial_Hide5howControlB azeddnBuntimePlatform
Lo Tutorial_ShowDetailz_OnClick

x|
2

x|

x|
2

—r1

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Resource Window |0

THE ADD AND UPDATE BUTTONS

In this step, you will drag the representations created for the Add and
Update buttons onto the window. You will attach Methods to the
OnDisplay event of both of these buttons, that will control which
button is displayed based on the value of the VariableMode variable.
OnDisplay Methods are executed on the server whenever the host
program sends a window. In this way, you control which button is
shown, and when. This is one alternative to driving interface
variations from the host using Indicators and DDSs.

You will then attach a Method to the OnClick event of these buttons.
This Method will perform server-side error handling when a button
attached to it is clicked.

* Note : In the next exercise, you will see how error-handling can be
performed host-side using the Jacada Studio IDK.

The Add Button
To add the ‘Add’ Button to your window, and control the oo |
functionality: [- 1 = W s
1. From Representations View on the Definitions Palette > Drag the - shou] =

Tutorial_Add representation onto your window > Place it to the @ o nal e @ 2l

left of the Back button. . o m [Ltionial,Back

i k Tutarial_Button _I
2. Double-Click the Add Button. - Tutorial_Button_M ainttenu
. . .. = = = Tutonal_Cancel
The Component Properties Dialog is invoked. Tutoris|_CheckbosYorl

3. Go to the Events Tab of the Component Properties Dialog.
4. In the Event combobox > make sure the event is OnClick.

5. Scroll down the Activate Method list until you see the
Tutorial_ActionPerformedWithErrorHandling Method. Tton Somperne L

gufer | Manager | s | Fomar | mvens (3

Event: [ondlick

Activate method:

i TableSelection_Delste
- TableSelection_Edi
TableSelection_Select
TableSelection_Update
TableS endéctionT cHost
Tutorial_ActionPerformedwithErrorHandling
Tutorial_AddE utton_OrDisplay
Tutorial_AddE diButtan_OnClick
Tutorial_AddE diButton_OnDisplay

User comment:

LIL@I_LIL

-]
9 || W

o | caedl | e |

4

4

6. Select the Method > Click the Link button.
7. In the Event combobox > choose the OnDisplay event.

8. Scroll down the Activate Method list until you see the
Tutorial_AddButton_OnDisplay Method.

* Note : Double click this Method in the Events Tab of the Component
Properties Dialog to view the code. This Method checks the
value of the VariableMode variable (populated by FDMODE) to
see whether the window was accessed in ‘Add’ or ‘Edit” mode.
If the window was accessed in ‘Edit” mode, the button is hidden.
If the window was accessed in ‘Add’ mode, the button is
displayed.

9. Select the Method > Click the Link button.

10. Click OK to come out of the Component Properties Dialog.

The Update Button

To add the ‘Update’ Button to your window, and control the
functionality:

1. From Representations View on the Definitions Palette > Drag the
Tutorial_Update representation onto your window > Place it on
top of the ‘Add’ button.

* Note : Don’t worry about aligning the ‘Update’ button precisely on top
of the ‘Add’ button. We will align the buttons in a later step.

2. Double-Click the Update Button. The Component Properties
Dialog is invoked.

3. Go to the Events Tab of the Component Properties Dialog.
4. In the Event combobox > make sure the event is OnClick.

5. Scroll down the Activate Method list until you see the
Tutorial_ActionPerformedWithErrorHandling Method.

6. Select the Method > Click the Link button.
7. In the Event combobox > choose the OnDisplay event.

8. Scroll down the Activate Method list until you see the
Tutorial_UpdateButton_OnDisplay Method.

9. Select the Method > Click the Link button.

10. Click OK to come out of the Component Properties Dialog.

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window

Button Component x|
Buffer | Manager | Stle | Fomat | Evenss
Event [onDisplay \ 6) |
Activate methad:
i~ TableSenddctionT oHuost B

Tutorial_AddE ditButton_OnClick

Tutorial_AddE ditButton_OnDisplay

Tutoria_&ddU pdateButtonSetText_OnClick
Tutoria_AddU pdateButtonS etText_OnDisplay
Tutorial_DisableControlE asedOniode_OnDisplay
Tutorial_EnoiFocus_OnDisplay

Tutorial_ActionPertormeduithE norHanding
Tutorial_AddButton_OnDisplay @

User comment:

E

Lk |, I Hew... | madfy.. |
My

9 oK Cancel | Help |

[ocfinitions Palette - RepreseniT]
EE]|
show [7]
Tutonial_Toplmage ;'

OB . (D
. -.M Tutorial Y ariable_Focus

Tutonal_WindowH eader
W ariable
Yarable_a&ction

Event: IOnChck j

Activate method:

- Tutorial_AddButton_OnDisplay

~\
Event: IOnDisp\ay ‘ 6 ’ j

Activate method:

- Tutorial_ShowD etails_OnClick. ;I

- Tutorial_ShowDetails_OnDizplay

--|TquliaLUpdaleBullunﬁDnDisplay | 0
UserRMBE ditable

- TableSendictionT oHost ;I
[Tutarial_ActionPerformedwithE rrorH andling | @

1
1

4

Align the Buttons

Align the ‘Update’ and ‘Add’ buttons with the ‘Back’ button and
with each other.

1. Select the ‘Update’ button > Shift+Click the ‘Back’ button to add
it to the selection group. Notice the ‘Back’ button has emphasized
handles, making it the leading control.

2. Right-Click anywhere on the window > Choose Align Top from
the right mouse button menu.

3. Click the window client to deselect all controls.

4. Select the ‘Update’ button > Right-Click to bring up the right
mouse button menu > Choose Send to Back. The ‘Add’ button is
now on top.

5. Select the ‘Add’ button > Shift+Click the ‘Back’ button to add it
to the selection group.

6. Right-Click anywhere on the window > Choose Align Top from
the right mouse button menu.

7. Click+Drag a rectangle selection on the ‘Add’ and ‘Update’
Buttons. Do not encompass the buttons fully or you may select the
‘Back’ button as well by mistake. It is enough that the selection
window touches the two buttons for them to be selected. If the
‘Update’ button is not visible because it is completely covered by
the ‘Add’ button...dont worry, it will be included in the selection.

8. Right-Click anywhere on the window > Choose Align Left from
the right mouse button menu. The ‘Add’ and ‘Update’ buttons are
now perfectly aligned with the back button and with each other.

* Note : For more information on control manipulation, please refer to
the IDK Walk-through section of this tutorial.

ERROR HANDLING

This exercise exhibits error handling with the use on server-side code
and not any host side code. The advantage of server-side code is to
validate the correct data is being accepted prior to passing this data to
the host data bases. This can help to improve performance by not
sending data to the host and validating it there and then sending it
back to the presentation for user correction. The example of a server-
side validation, in this case, is done through the use of a method
called Tutorial ActionPerformedwithErrorHandling which is linked
to both the “Add” and “Update” buttons. The “Add” is invoked when
using the Add Resource window and the “Update” is used when in
the Edit Resource Window. Each of these buttons is the only button
on the respective window which sends information to either add or
modify the data bases.

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window | 2

; 1
#J* Run Function Definition. .. . © Advanced Editing. .,
| .

— . 1

Align Right
HM . SevetoknnledgeBse

Align Bottam - Cut

o

Horizonkal Center [] [] P::;:B

Horizonkal Group Center B BOCR

vertical Equal Spacing u L] u

Harizontal Equal Spacing

Equal Width

Equal Height
...... Equal Size

Adjust Size by Text

Set Fort and Color...

Adwanced Editing...

Send to Back

Save to knowledgeBase
[n] =} n Copy

o =]

o=
Application File Edit View Help
; Contact Us!

First Name _4— Red Field
LastNamo [Background

Title ~

Comments [

/ Error Message
‘watNameHEuuwed M‘M_s‘ﬂ

|Warning: Applet Window

1

4

The method is written to verify that both the FDFNAM (First Name
field), FDLNAM (Last Name field), and FDTITL (Title) fields do not
contain all blanks. Since these are required fields, each field is
checked to make sure some text entry has been type before
submitting this data. If one of these fields contains all blanks, an error
message is presented after a refresh of the window is done. The
refresh allows an OnDisplay method

Tutorial ErrorFocus OnDisplay linked to each of these field to
activate and change the associated representation background color
to turn red and sets the cursor position to the field with all blanks.

Example of the error messages sent:

Field Error Message
First Name “First Name Required”
Last Name “Last Name Required”
Title “Title Required”

GENERATE RUNTIME AND TRANSFER FILES

Compile the Subapplications into an executable, and transfer the
DDS physical files to the host via the Generate Runtime Wizard. The
automatically generated Shell programs will not be transferred for
this subapplication, since the host code has been prepackaged for you
and already exists in the MYTUTORIAL host library.

To generate a Runtime:

1. From the File menu > choose Generate Runtime... The Generate
Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

Runtime Type: Java

Jacada Server Windows NT(2000) x86
Platforms:

Subapplications to All

Include:

Subapplications to Only new and modified
Process:

* Note : The Only new and modified option allows you to only compile
the Subapplications that were modified. Only the modified DDS
physical file and RPG program of subapplication PADDRE are
FTP’d back to the host, and only they need to be compiled.

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window |3

If: Cond: “#1 == _TRUE"
If: Cond: * #2 == VariableFocus™
DoMethod: Receiver: “this® Method: SetFocus Parms: |)
DoMethod: Receiver: “this® Method: SetBackgroundColor Parms: ¢ " "Red™)
Else:
DoMethod: Receiver: “this® Method: RestorelefaultColors Parms: {)
EndIFf:
EndIFf:

[File.

Mew 3
Open 3
Close application

Delete 3

Application Properties. ..

KnowledgeBase. ..

Save All Cirl+5

Generate Runtime, .)
Run Application. ..

Exit

Subapplications ko process: Mext =
< all

< Back
 Orly new and modified a

@ Cancel

Help

dadi

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Resource Window | 4

3. In the File Transfer screen, specify the following information, x|
then click Next: ¥ Transfer fles @ — >ﬂ
Transfer Files: <checked> st |<Hestpdiess> Lﬁc"l
Login user: <serMame = v Save Cancel |
Host: <YourHostIPAddress> Login password: | ¥ Save Help |
Login User: <YourUserNameOnHost> Target lirery: [1VTUTORIAL
Login Password: <YourPasswordOnHost>
Target Library: MYTUTORIAL
F.’ * Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIALO1) as the Target
Library.
4. In the Specify Host Connection and Application Information Fation R

Port number: I 7666 Back
Host: = s

<YourHostIPAddress> L
Host application

% Default Custom

Port Number: 7666 Initial program: IPMENU Yl Help
Initial Program: PMENU Library list: IMVTUTORIAL Jncnoq |

Library List: MYTUTORIAL JACADA

Cancel

X
screen, specify the following information, then Click Next:
Hast: |<HostIPAddress> et = : @

[’ * Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIALO1) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to complete the Generate Runtime Wizard, and
commence with the compilation process.
The Generating the Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process, this confirms that the compile
was successful and that you can continue to the next step.

6. Click Close to exit the Generating the Runtime dialog.

ABouT HosT CoDE

Let’s look at the block of code to the right, taken from the program
logic written for the PADDRE Subapplication of the ITUTOR demo.

This example shows how to read a particular record requested by the
user, and how to display the information from the record on the
window. In this example, database fields are moved to the window
buffer fields. This process is similar to the one you use today, when
working with display files.

CompILE DDS AND PROGRAM FILE ON HoST
Verify that the JACADA library is included in your library list.

Compile the DDS physical file, PADDRESD and the RPG program
file PADDRE in your MYTUTORIAL library.

RUN APPLICATION

In order to run your Application, you must first verify that the Jacada
monitor is active. Only then can you run your Application.

Ensure the Jacada Monitor is Active
To ensure that the Jacada Monitor is active:
1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

Run your Application with a JAVA Client

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Resource Window |5

N
Y

C***

C* Load Data for Edit Mode

c********k****************************‘k‘k‘k‘k‘k‘k‘k‘k

C EDTMOD BEGSR
© RES# CHAINRESR 81
© *IN81 IFEQ '0'
(o} MOVE RERESN FDRESN
(o} MOVE RELNAM FDLNAM
(o} MOVE REFNAM FDFNAM
(o} MOVELRERCOM FDRCOM
(o} MOVELRETITL FDTITL
© ENDIF
© ENDSR

[File
T 4
Open 3
Close application
Delete 3

Application Properties. ..

KnowledgeBase. ..

Save All Crl+5

Generate Runtime, .,

M@

Exit:

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Resource Window | 6

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

Runtime Type: Java
Web Server: Integrated HTTP Service
Application URL: http://localhost:8080/MYTUTOR.html
3. Click Finish to come out of the Run Application Wizard. [~ o= PMENU
The Jacada Server is activated and your Default Browser window) K Main Menu
is opened to the Jacada <AppIName>.html page. [g
4. Type your iSeries Username and Password into the appropriate J‘“’ R
fields.
5. Click the OK button to run your JAVA client Application. Existing
SubApplication
Add
(prepackaged)
Navigate to the Add / Edit Resource Window !
Navigate to the PADDRE Subapplication by using the diagram v *
provided for you to the right. Navigate to the Subapplication in both E"“ = [oy
Add and Edit mode to see the final product of your efforts in this p——— Add =
exercise. —— =
'''' — T | — i
Edit
PADDRE PRESO
Add / Edit Resource Work with Resources

Navigate to the PADDRE SubApplication in both Add and Edit
mode.

The Finished Product S

Applicetion File Edt Wiew Help

Ay

Contast Usé

This is what your window should look like when accessed in ‘Add’
mode in the Java client.

First Name

Last Name
Title ha

Comments |

<o D
o

|warning: Applet Window

The final product of your efforts in this exercise. The look of the
PADDRE SubApplication, when accessed through ‘Add’ mode.

This is what your window should look like when accessed in ‘Edit’
mode in the Java client.

Close the Jacada Server

When you are done running your Application

—_

. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

1ol

Application Fle Edt View Help

EXERCISE 3 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Resource Window |7

Resource # 00001

FirstName [Jay
[Adams
Title [Wanager =]

Comments

Last Name

[Senicrievel sxperience

|Warring: Applet Window

policy=C:“\JacadaStudio“JacadaFiles“classes\jacadasv.policy
Studio~JacadaFilesclasse
C:“JacadaStudio~JacadaFi
Filessutils web:\jettyxlib%org. nul-tbay Jetty. jar
"\llEh\JEtty\llh\JﬂUﬂx. e

bhhcom.sun

er
Jacada<R)> Server Module
Copyright{(C> 1997-208082 Jacada Ltd.

Loading Jacada Server,. please wait...

Server regmat
quit o

C:nJacadaStudio~JacadaFilessc lassa"
itilssxmlscrinsontc

rulet . jar;CindJacadaStudiosJacadaFiles™

gsl.jar;C:sJacadaStudiosJacadaFilessutilssuwebsje
Jac a(laStl.u:l ionJacadaFilessutilssxmlsxalanxxalan.

STARTED

Exercise 3 - Jacada Studio For iSeries

How It Works: The Add / Edit Resource Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you

ready?

The VariableMode Hidden Variable

Remember the Methods that you attached to the OnDisplay events of
the ‘Add’ and ‘Update’ buttons? These Methods are used to control
whether the button will be displayed or not during runtime. To see
how this works, open the PADDRE program on the host and take a
look. Heres how it works:

1. The RPG program receives the MODE parameter from the
program from which it was called. The value of the MODE
parameter is either ADD or EDIT depending on the program from
which this screen was called. The RPG program moves the value
of the MODE field to the FDMODE field.

2. When the RPG program gets to a READ statement, the screen is
sent to the Jacada Server with the value of the FDMODE field.

3. On the server, the value of the FDMODE field is passed to the
VariableMode variable.

4. On the server, all OnDisplay Methods are executed when the new
screen loads or is refreshed.

5. Add/UpdateButton_OnDisplay Method extracts value of
VariableMode and decides whether to display button depending on
that value.

Client

Server

Host

Hide / Show Button

@ A Hide / Show

Add/Update Button
_OnDisplay
Method

@ A Update

Window Component
VariableMode = ADD

@ A Update

Window Field
FDMODE = ADD

@ A Update

RPG Code
FDMODE = ADD

N

Exercise 4 - Jacada Studio for iSeries

Create the Add / Edit Project Window

Objectives:

+ To provide an exercise that replicates the Add/Edit Project window in the pre-packaged iTutor application

¢ To build a window in which new data can be Added or existing data can be retrieved and Updated

¢ To examine dynamic GUI display alternatives to Indicator driven Display File behaviors

- Conditional runtime display driven by client events (based on program mode of Add or Update)

- Project # show/hide depending on mode

- Variable Text and behavior (Update or Add) of a single Action button displayed depending on mode

- Disabling an input capable field at the client based on program mode

¢ Using methods to communicate the results of data validation performed at the host to the client

+ Using code extensions to add advanced GUI controls in XHTML (date control)

In this exercise, you create the Add / Edit Projects window of the ITUTOR Application. Your MYTUTOR Application should already contain six
of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu and Add/Edit Resource windows that
you created in the previous exercises. This window is used both as an Add Project window and as an Edit Project window, depending on the entry
point chosen by the user. In the last exercise, you attached a Method that performed server-side error handling. In this exercise, we will show you
one way of performing error handling through your RPG program’s business logic. In the last exercise, you attached a Method that performed a
hide / show on the ‘Add’ and ‘Update’ buttons, depending on the mode that you were in. In this exercise, we will show you another way of
achieving the same results, server-side. Last but not least, you’ll run an XHTML runtime, and extend your HTML code to achieve the desired
results. In this exercise, you will experience how easily and speedily a window can be constructed and deployed, with a predefined

KnowledgeBase.

You are here!

Y
: . Your First . Add / Edit i q .
Tutorial Exercise e Main Menu Add / Edit Project Work With
. IDK Walk-Through Application 5 Resource ; : :
Overview Exercise Exercise Exercise Exercise Projects Exercise

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 2
Create the Add / Edit Project Window

The major steps to this exercise are:

Window Design Specifications
Create the PADDPR Subapplication
The Add and Update Button

Adding Fields to the Window

Error Handling On The Host

The “Project #’ Representation =T
Generate Runtime and Transfer Files ~— ‘Add Project’ Header [|

Cantast usé

Compile DDS and Program File on Host

Run Application with a Java Client

Extend the HTML Code to Include Date Controls Name —
Run Application with an XHTML Client o f 4
Start Date I -
End Date: 77 - @
Comments: | ‘Add’ Button
<@ @
\ o

|wiarning: Applet Window

WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication interface,
between when it is accessed through ‘Add’ mode and when it is
accessed through ‘Edit” mode. The differences are:

In “Add” mode:
1. The window header says “Add Project”.

2. There is an “Add” Button, to the left of the “Back” button in the
bottom right corner of the window.

Edi: View Help

-— ‘Edit Project’ Header ‘ 3
{Contact sé

In ‘Edit’ mode:

1. The window header says “Edit Project” Poccts: 1 <a—— Project # Representation

. . Name CEECIE :) ~— Disabled Textbox
2. There is an ‘Update’ Button, to the left of the ‘Back’ button in the .] ’

X i eparment: [Franse =]
bottom right corner of the window.
Start Date: lm
3. There is a “Project #” representation. EndDate: [R5
. R L omments: [FomemmeE Update’ Button

4. The ‘Name’ textbox is disabled. ’ e v
In this Subapplication, you must also take into account the <
requirement to support both the Java and XHTML runtimes with date ‘ T
controls. HTML support of date controls varies from Java today. esmootses

Therefore, you will extend your HTML code with a prepackaged
extension. This extension will allow you to implement the date
control in the HTML runtime and provide you an example of the
extension architecture.

FYI: The IDK Date Control

The IDK date control is a specialized edit field that enables your
users to easily enter data that is intended to be interpreted as date
information. The date control contains the following features:

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window

1. Format masking that limits the allowed input characters.

2. Year data input as two digits is automatically translated to four
digit data using the defined base year.

3. A calendar tool associated with the date control allows users
to choose a date graphically.

CREATE THE PADDPR SUBAPPLICATION

In this step, you create the PADDPR Subapplication in your
MYTUTOR Application. Make sure that the Application combobox
shows that you are in the MYTUTOR Application before proceeding.
In this exercise, you apply a prebuilt Window Layout called
Tutorial_BasicLayout to your Subapplication.

1. Open the Jacada Studio Interface Development Kit (IDK) and the
MYTUTOR Application

2. From the Subapplication Menu > New ... The New
Subapplication Wizard is invoked.

3. In the New Subapplication Wizard, specify the following
Subapplication properties:

Subapplication Name: PADDPR
Popup Window: Unchecked
Window Layout: Tutorial BasicLayout

Subapplication
Description: <none>

4. Click Finish to come out of the New Subapplication Wizard.

THE ADD AND UPDATE BUTTON

In the last exercise, you used two buttons and controlled the display
with a method that controlled which button is displayed based on the
value of the VariableMode variable.

Start Date: | I :l
End Date: | 7f21/2002 il
Alr] sug-2002 <]
Comments: Su Mo TuWwe Th Fr 5a
1 2 2 4 5 &
7 8 910 11 12 13
14 15 16 17 18 13 20
(21,22 23 24 5 5 27
287

Window |ayout:

<MNone >
BasicLavout
Menulayout
Tukorial BasicLayout
Tutorial_BasicLayoutiwith Table
Tutarial_MenuLayout
wieblLookBasicLayout
wieblLookMenuLayout

Wl Aadd Menn Trems i
4 | ¢

Mext =

< Back

Cancel

dadin

Help

3

4

In this exercise, you use only one button. You will attach “”SetText”
Methods to the OnDisplay and OnClick events of this button. The
method will change the text that appears on the button, based on the
value of the VariableMode variable. This is another example of
controlling interface variations from the host, similar to using
Indicators and DDSs.

To add a button to your window, and control its functionality:

1. From Representation Definition View of the Definitions Palette >
Drag the Tutorial_SmallDefaultButton representation onto your
window > Place it to the left of the Back button.

2. Double-Click the button. The Component Properties Dialog is
invoked.

3. Go to the Events Tab of the Component Properties Dialog. Make
sure that the Event is OnClick.

4. Open the General Methods tree and scroll down the Activate
Method list until you see the Tutorial AddUpdateButton
SetText_OnClick Method.

* Note : For a detailed explanation of Events - see the ‘How It Works’
section at the end of the Main Menu window exercise.

5. Select the Method > Click the Link button.
6. In the Event combobox > choose the OnDisplay event.

7. Scroll down the Activate Method list until you see the
Tutorial_AddUpdateButtonSetText_OnDisplay Method.

8. Select the Method > Click the Link button.

9. Go to the Style Tab of the Component Properties Dialog.
10. Type ‘Add” into the Text Field.

11. Click OK to come out of the Component Properties Dialog.

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 4
Create the Add / Edit Project Window

|
Representation
Reprosentalon - [E1 | 23] 98 |

_Def_initi_on View
Show:l vl

TutoriaI_F'FEESD_MenuIlem_List_E;l
Tutorial PRESO_Menultem_List_S

- Tutorial_SmallDefaultBution
torial_StaticText
Tutorial_Submit

Tutorial_T able

:.: :.: :@:
-

Tutorial_T ableaction_Button

Event; IOnC\ick j @

Activate method:

- Tutorial_AddE ditB utton_OnClick Al
Tutorial_addE ditButton_OnDisplay
Tutorial_AddUpdateB: SetText_OnClick |
Tutorial_&ddUpdateB uttonS et T ext_OnDizplay

Evert: IOnDlsD\ay

Activabe method:
Tutarial_AddE ditB uttor_OnDisplay

Tutarial_aAddl pdateB uttonS etT ext_DnClick
Tutorial_AddU| tText_OnDisplay (7)
i+ Tutarial_ErorFocus_OnDisplay -

Button Component

Buffer I Managet @ Skyle *— Style Tab

Button bype ——————— Basic styles —
¥ Standard " Default ’7 [~ Tah stop

¥ Transparent Indd -— intothe text

"Buttun styles ——————— Text: (1 0) Type ‘Add

™ Raisrk Fare field

4. ADDING FIELDS TO THE WINDOW

In this step, you will add Representation Definitions to the window
by dragging fields onto your window from Field Definitions View of
the Definitions Palette. You will then choose the representations
associated with the field from a “Short List”.

Click the Field Definitions View Icon in the Definitions Palette to see
the list of fields defined in the KnowledgeBase.

To add the remaining Representations to your Subapplication, refer to
the table below:

FDPNUM Tutorial Label OutputField

FDPNAM Tutorial Label InputField

FDDEPT Tutorial Label Combobox Department
FDBDAT Tutorial Label DateControl

FDEDAT Tutorial Label DateControl

FDPCOM Tutorial Label InputField

1. Drag the fields in the Window Fields column onto the window,
from the Definitions Palette. The Select Field Representation
Dialog appears.

2. Select the representation in the Representations column, from the
_Short List_in the Select Field Representation Dialog.

3. Click OK to come out of the dialog. Your representation is added
to the window. It is associated with the field that you dragged from
the Definitions Palette.

Arrange the Position of the Added Representations

Arrange the position of the added representations according to the
image to your right. For more information on control manipulation,
please refer to the IDK Walk-through section of this tutorial.

5. ERROR HANDLING ON THE HOST

Before we see how error handling is performed on the host, we need
to add a couple of variable definitions to our window.

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window

Definitions Palette - Fields =l

=NEEENEN
FDAC Eleld Definitions =
FDOED
FDEILL . . .
FODERT Field Definition View Icon

FOEDAT |

Click on the Field Definitions View Icon in the Definitions
Palette to see the list of fields defined in the KnowledgeBase.

' C 'Proiect#:)
J o Neme o ElE G(#)
FDACORM -
o S Foacom j

FDBILL
FDDEFT @
FDEDAT

FOFNAM
FOHEAD
FOLNAM
FOMAIL

FOMODE

Drag fields onto the window, then choose the correct
representation from the Short List.

_io(x|
Flo Edt Vew Help
E Contact Us!

R roeas
Name:

Start Date: T :

End Date: I

Comments: |

Arrange the position of the added representations like this.

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 6
Create the Add / Edit Project Window

Add Variable Representations to the Window

In the last exercise, we saw and implemented the usage of the
VariableMode variable (attached to FDMODE field). In this exercise,
we use the VariableFocus variable (attached to JSTFOC field) and
the VariableMessage variable (attached to JSTMSG field) to
perform error handling on the host.

* Note : The VariableMessage variable and JSTMSG field already exist
in your Subapplication - they were brought in by your window
layout

Don’t forget, we still need to add the FDMODE variable to our
Subapplication. It is used by the SetText method to set the value of
the ‘Add ‘and ‘Update’ buttons.

1. Add the Variable Representation Definitions in the table below to

the window by dragging Window Fields onto your window. Then, Project# - Output
choose the Representations associated with the field from the) N'M;E_) l—))) @)
“Short List” of favorites. Drag the following fields onto your T— _ - _
Subapplication window from Field Definitions View of the - Depanmen EENIIETSIT, g Wi |
Deﬁr?ilt)ions Palette: g | StartDate: zhpWISthttLdtft = \%‘%I EFD’EJ i | R
o . ko 2 Mods —I FDEDAT
End Date Help ;B;Péig |
Window Fields Representations Commente: FoLKeM
JSTFOC Tutorial Variable Focus
FDMODE Tutorial Variable Mode

* Note : When you drag these fields onto the window, it will seem as if
nothing has happened, and no representation will appear. This is
because these fields are attached to hidden variable
representations.

2. Make sure that these fields were added to the window: Check that

the fields JSTFOC and FDMODE reside in the list of fields in the x|
Window Fields Palette. Check that the VariableFocus and ABE StaticO3 AR
, ~ABC Static004
VariableMode variables exist in the list of window components in L\ Variabledction it @
the Window Components Palette. (they will have an icon with a)\ VanableFacus <@— L FOTITL
picture of a ghost) ﬂ YariableMessage Egzg%’g -
£ VaizsbleMode <— LB TR — 3
. - window jid Name JSTACT =
About Host Code Error Handling | Tope Alphahlumeic
Size. ~ 10 LI

In the last exercise, error handling was performed server-side. In this
exercise, let’s look at an example of how error handling can be
performed on the host. To see how we did it, open the PADDPR
program on the host and take a look. Heres how it works:

4

4

Let’s look at the block of code to the right, taken from the program
logic written for the PADDPR Subapplication of the ITUTOR demo.
This example shows how to display a message, and how to set the
focus on a given field.

In this example, "Project Added" was moved to the message field in
the buffer. (You can see MSG2 defined on page I of the program
listing.) The Method Tutorial_ErrorFocus_OnDisplay, which
executes at display time, will display the message in your client’s
Dynamic Information Line (DIL) during runtime. The preceding was
done if the project was added successfully.

Otherwise, if the project was not added successfully:

The field name FDBDAT (connected to StartDate on the screen) was
moved to the field JSTFOC, when the window is displayed; and
MSG4 was moved to the DIL (You can see MSG4 defined on page 1
of the program listing.).

* Note : See the ‘How It Works’ section at the end of the exercises for a
detailed explanation of the runtime behavior between client,
server and host.

THE “PROJECT #”’ REPRESENTATION

According to our project requirements, the Project Number controls
must appear on the window if it is accessed in ‘Edit” mode, but not if
itis accessed in ‘Add’ mode. As you did in the previous exercise, use
the Tutorial_HideShowControlBasedOnMode hide/show Method to
control this interface variation. To do this:

1. Attach the Tutorial_HideShowControlBasedOnMode Method to

the OnDisplay event of both the Static and the Output components.

* Note : Make sure you attach the method to both the Static and Output
components. For further details, see Step 5 of Exercise 3 to
refresh your memory on how this is done.

2. Check the Runtime data flow checkbox in the Manager Tab of the
Static component’s Properties Dialog.

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window

A
A

Y

C***

C* Add Record - User Clicked Add Button 4
C***
C*
C* Send "Project Added" to DIL
C MOVELMSG2 JSTMSG
C*
C*Error - Start Date > End Date
© ELSE
© MOVEL'FDBDAT' JSTFOC
C MOVELMSG4 JSTMSG
© ENDIF
C*
zl

Buffer I Manager I Skyle I Format I Events

Event: IOnDispIay j

Activate method:

i Tutarial_HideShowColurnng azed0nR untimePlatform
[T utorial_HideShowControlBazed0nMode |
- Tutarial_Hide5howControlB ased0nFuntimePlatform
- Tutorial_ShowDetails_OnClick

Static Component ﬂ

Buffer I Manager I Skyle I Format I Events

Runtime data flow: @

ol L
—r B o F
Screen Manager window
Variable
Mame: IStatic

Ll 1

Read data From INI file: INone

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 8
Create the Add / Edit Project Window

GENERATE RUNTIME AND TRANSFER FILES [Fe
Compile the Subapplications into an executable, and transfer the ge'” :
DDS physical files to the host via the Generate Runtime Wizard. The Clpen .
X . ose Application

Shell programs will not be transferred, since the host code has been Delete ,
prepackaged for you and already exists in the MYTUTORIAL host Application Properties. ..
library. To generate a Runtime: KnovdadgeBase. .
1. From the File menu > choose Generate Runtime... The Generate Save Al Chrls

Runtime Wizard is invoked. = -

Generate Runkime. .. k
2. In the Generate Runtime Wizard, click Next to accept the Run Application...
following default settings: Exit

Runtime Type: Java and XHTML

Jacada Server Windows NT(2000) x86

Platforms:

Subapplications to All

Include:

Subapplications to Only new and modified

Process:

r.’ * Note : The Only new and modified option allows you to only compile
the Subapplications that were modified. Only the modified DDS
physical file and RPG program of subapplication PADDPR are
FTP’d back to the host, and only they need to be compiled.

3. In the File Transfer screen, specify the following information,

. =l

then click Next: =— @
v Transfer files ’m

Transfer files: <Checked> riosti | vospaddress> _ <k |
Lagin user: |<UserName> |7 Save Cancel |

: < >

Host: YourHostIPAddress e IW e = |

Login User: <YourUserNameOnHost> Targetlrarys [1TUTORIAL

Login Password: <YourPasswordOnHost>

Target Library: MYTUTORIAL

r.’ * Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIALO1) as the Target
Library.

4

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIALO1) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process. The Generating the
Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process, this is an indication that all is
well and you can safely go on to the next step.

6. Click Close to come out of the Generating the Runtime dialog.

CompILE DDS AND PROGRAM FILE ON HOST

Verify that the Jacada Library is included in your library list.

Compile the DDS physical file, PADDPRSD and the RPG program
file PADDPR in your MYTUTORIAL library.

RUN APPLICATION WITH A JAVA CLIENT

In order to run your Application, you must first verify that the Jacada
monitor is active.

Ensure the Jacada Monitor is Active
To ensure that the Jacada Monitor is active:
1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 9
Create the Add / Edit Project Window

pation X
Hask: |<HostIPnddress> et = @
Port number: |?666 E < Back

Host application
% Default € Custom

Initial program: IPMENU < l Help

Cancel

W ke IMVTUTORIAL JACADq I

Date: T/07/2002 Configure Jacada Monitors
Time: 20:97:16
Tupe options, press Enter.

1=5tart 2=Change 3=Copy d=Delete G=Deta

Auto Max. Inacti:

Opt Monitor Status Port Start Jobs Timeout
B JACADA @ Active TERE Y logea 10000
Fa=Exit FA=Refresh Fe=Create Flz=Cancel

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Project Window |0

Run your Application with a JAVA Client [Fe
Run the executable created during the Runtime Generation process L=t "
e : . Open 4
from within the development environment: Close Application
Delete 3

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

Application Properties. ..

KnowledgeBase. ..

2. In the Run Application Wizard, agree to the default Runtime

. o Save Al Chrlts
properties, by clicking the Next button, when prompted for: = il

Generate Runtime, .. @
Runtime Type: Java _ 6!
Exit:
Web Server: Integrated HTTP Service
Application URL: http:/localhost:8080/
MYTUTOR html
N (2) x
3. Click Finish to come out of the Run Application Wizard. The Sl Ut s
Jacada Server is activated and your Default Browser window is g s |
opened to the Jacada <AppIName>.html page. LS |
Cancel |
4. Type your iSeries Username and Password into the appropriate Help
fields. 4'
5. Click the OK button to run your Java client Application.
. . . . PMENU
Navigate to the Add / Edit Projects Window ;
Main Menu
Navigate to the PADDPR Subapplication by using the diagram o
provided for you to the right. g
* Note : You can only navigate to this Subapplication in ‘Add” mode at 1
this time. This is because the PPROJ Subapplication, from “T' o
which you can access this window in ‘Edit’ mode, has not been
built yet. You will build the PPROJ window in the next exercise.
For now, navigate to this window in ‘Add’” mode only. After you i%

complete the next exercise, navigate to this window in ‘Edit’
mode to see the final product of your efforts in this exercise.

PADDPR
Add Project

The Finished Product

This is what your window should look like when accessed in ‘Add’
mode in the Java client.

This is what your windows should look like when accessed in ‘Edit’
mode in the Java client.

* Note : Remember, you will only be able to access the window in Edit
mode after completing Exercise 5.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window

e =

Appiication File Edit View Help

k|

cantast isd

e
Name: |—
D [=l
Start Date: i -
End Date: I]|

Comments: [

D D
[]

|wiarning: Applet Windaw

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Add’ mode
in a Java runtime.

ST

Application File Edit View Hefp

@ Project# 00001
Name: [Bwgetims
Deparment: [Finance %]
Start Date: ,W’
End Date: ,W[

Comments: [Scope project

\ I]

[Warning: Applet Window

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Edit’ mode
in a Java runtime.

1
1

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Project Window |2

EXTEND THE HTML CoDE TO INCLUDE DATE
CONTROLS

In the XHTML client runtime, it is still possible to improve your
Application’s look and feel after developing your Application in the
IDK. Such improvements are made outside of the IDK and are
manually incorporated into the Jacada Studio Application. This is
done by creating user HTML extensions. During runtime, the Jacada
Server merges these HTML extensions with your runtime
Application. User HTML extensions enable you to incorporate Java
Scripts, VB Scripts and various other HTML features into runtime-
generated XHTMLs.

For the sake of this example, the requirement is that both the Java and
XHTML runtimes have date controls. HTML does not support date
controls, so we have extended the HTML code with a prepackaged
extension. This extension will allow you to implement the date

control globally in the HTML runtime.

FYI: Naming and Placing a User HTML Extension File

1t is important to correctly name and position your user HTML 5.0 1acadastudio
extension file. The file’s name has a direct bearing on the level at &1 appls
which the extension file is incorporated into the Application. -] BITMAPS
Extension files can exist on different levels: Subapplication level e

. . et . .. F_] classes
extensions take the highest priority and override Application level 503 1maer
extensions. -1 initappl

- initrt
Application Level - To merge a user extension file with the whole L Install
. . .. “« 0 .. EI--{:I JacadaFiles
Application, you must give it the name “appl.html” and save it in the M0 classes
\JacadaFiles\classes\appls\<applname>\xhtml\user directory. The B appls
extension file is then incorporated into the whole Application. It =0 mutor
effects all Subapplications in the Application. D images
D original
=0
Subapplication Level - To merge a user extension file with one Es D;Srz::t - g/agi az Java
specific Subapplication, you must give it the name of the w0 server cripts here
Subapplication. If the Subapplication’s name is “PADDPR”, then % user
you must name your extension file “PADDPR.html” and save it in = {gtr:riginal
the Application or library’s user directory. The extension file is then Place all HTML
extensions here

incorporated only into that one screen.

4

The Date Control Extension

The javascript file APS.js is used to create the date controls and the
GUI calendar functionality. It is called from the HTML file
appl.html. This file is used as a global extension and it effects all
Subapplications in the Application.

These extension files are included with Jacada Studio for iSeries, and
can be used to create sophisticated GUI date controls in all of your
HTML client runtimes.

To view the prepackaged extension:

1. Go to the directory \JacadaStudio\JacadaFiles\classes
\appls\MYTUTOR\xhtml\user

2. Open the appl.html file in any text editor

To view the prepackaged javascript:

1. Go to the directory \JacadaStudio\JacadaFiles\classes
\appIs\MYTUTOR\resources\JScript

2. Open the APS.js file in any text editor to view the code.

* Note : In addition to adding the date controls and the GUI calendar, the
APS js javascript file also sizes the windows and removes the
up/down scrolling buttons assigned to tables by default.

RUN APPLICATION WITH AN XHTML CLIENT

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties by clicking the Next button, when prompted.

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window |3

<html>
<head>

<script src="http://localhost:8080/classes/appls/

ITUTOR/resources/JScript/APS.js">
</script>
<title></title>
</head>
<body onLoad="onLoad ();">
<form name="jacadaform" id="jacadaform">
</form>
<form name="myForm">
<script>
checkDateControls () ;
</script>
</form>
</body>
</html

[Fie

(1= 3
Open 3
Close Application

Celete 3

Application Properties. ..

KnowledgeBase. ..

Save All Chrl+3

Generate Runtime, . @

Runtime Type: XHTML

Port Number: 8080

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/
MYTUTOR-xhtml.html

3. Click Finish to come out of the Run Application Wizard. The
Jacada Server is activated and your Default Browser window is
opened to the Jacada <AppIName>.html page.

Exit
Select runtime type: Mext =
 Java @
< Back
& HHTML

Cancel

Help

dadiy

1

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your HTML client Application.

Navigate to the Add / Edit Projects Window

Navigate to the PADDPR Subapplication. Navigate to the
Subapplication in both Add and Edit mode to see the final product of
your efforts in this exercise.

The Finished Product

This is what your window should look like when accessed in ‘Add’
mode in the HTML client.

This is what your window should look like when accessed in ‘Edit’
mode in the HTML client.

Close the Jacada Server

When you are done running your Application

—_

. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
“Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes to the message that
appears.

3. Close the Jacada Server command window.

4. Close your browser window.

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Project Window | 4

ITUTOR - - Microsoft Internet Explorer -] x|

Fle Edt View Favortes Tooks Help |

Beck - & - @ [A) A | @search [ilFevories @rede B | B b B - 1 #

Address [&) it flacahast:8080/TUTOR <kt him!

Fugudt[=][2002
<o <| Today| >[>]

[SuMoTuWe[Th[FrlSal
1 2 3
4| 5| 6] 78] 9]0
11[12[13]| 14 |15[16 |17

Name:

Department: [El e e e e
23
Start Date: h’iﬁ%
End Date: ,/,7®
Comments |
= [[[ocalinwanet v

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Add’ mode
in an XHTML runtime.

AITUTOR - - Microsoft Internet Explorer =10l x|

Fle Edt View Favorkes Tools Help |

wback v+ = - (D [A) M| Qeeach [Giravorss Frveda B AN SpE - H -

=] @0 |tk 7|

Address [€] htp: flocalhost: 5080/ ITUTOR-hm.html

S

September 2][2052
<-|_<| Today | =|>

SuMo|TuWe[Th|Fr|Sal
1] o[a] 4567
8] 9[i0]11[12]13]14
15| 16[17]d8 [19]20]a1
24 26

m Project# 00003
Name: [Product epplication

Department: [Varketng =

StantDate: [0g730,02 ﬁi\&
End Date: [1i701/02 &

Comments: [Develop, QA product

@ D

Eiooe [B

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Edit’ mode
in an XHTML runtime.

4

4

4

Exercise 4 - Jacada Studio For iSeries

How It Works: The Add / Edit Project Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you
ready?

Error Handling On The Host

In the last exercise, error handling was performed server-side. In this exercise, error handling was performed on the host, with a little help from an
IDK Method. To see how this works, open the PADDPR program on the host and take a look. In this example, we run validity checks to make sure
that none of the fields are blank. Heres how it works:

In the IDK: Client
Set focus on control
1. In the IDK, the Method Tutorial_ErrorFocus_OnDisplay, is Set control background to red
attached to all input fields on PADDPR. Move value of JSTMSG to DIL

* Note : You can double click any of the controls that require input and Server @ " If name of control = value of JSTFOC
go to the Events tab to see this association.
ErrorFocus_OnDisplay

On the Host: Method
2. The nested IF statements check the valid fields to determine if the A Undat
field is blank. @ it
3. If the field is blank: Window Components
. VariableFocus = FNAM
- The name of the field is moved to the JSTFOC field VariableMessage = error
- An error message from the “Application Messages” [A
specifications is moved to the JSTMSG field. . Update
* Note : For example, if the value of the FDPDES field is equal to Window Fields
blanks... notice the ELSE statement (towards the bottom of the JSTFOC = FNAM
code) - the field name FDPDES is moved to the JSTFOC field JSTMSG = error
and a message is moved to the JSTMSG field. @ A P
4. When the RPG program gets to a WRITE statement, the screen is Host :
sent to the Jacada Server with the value of the JSTFOC field and RPG Code

JSTFOC = FNAM

the JISTMSG field. JSTMSG = error

On the Jacada Server:
5. All OnDisplay Methods are executed

6. The ErrorFocus_OnDisplay Method gets the name of the current control and compares it to the value of the JSTFOC field (Variable
Representation name is VariableFocus).

7. 1f the value of the JSTFOC field matches the name of the current control, the Method:
- Puts the focus on the current control

- Sets the control’s background color to red
- Sends the Application message in the JSTMSG field to the Dynamic Information Line (DIL).

* Note : All Subapplications with required input have a variable representation called VariableFocus which is attached to the JSTFOC field in the buffer
for the error handling to work.

N

EXERCISE 4 - JACADA STUDIO FOR ISERIES | 1
Create the Add / Edit Project Window |6

Disabling the ‘Name’ Textbox in Edit Mode

In this project, the requirement is that the textbox containing the
project name be disabled in Edit mode. To do this, the

Tutorial_DisableControlBasedOnMode_OnDisplay Method was T
pre-attached to the OnDisplay event of the textbox component of the project# - cuput |
representation used to create the name field. This Method checks the S
value of the VariableMode variable (attached to the FDMODE field). ~ Name:
If the variable’s value is ‘EDIT’, the textbox is disabled. If the

variable’s value is anything other than ‘EDIT’, the textbox is enabled.
To view this Method: Start Date: [

EBuffer] Manager I Style I Format] Ev

Event: IOnDlsplav bl

Activate method: 3
\TulnliaI_DisableCDnlmIBasedl]nMode_l]nDispl:l
Tutorial_ErmrorFocus_OnDizplap
Tutorial_Hide5howColumn_0nDisplay
Tutorial_Hide5howColumnB ased0 nRuntimePlatform
Tutarial_HideShowCantrolBazedOnMaode
Tutorial_Hide5 howControlB azedOnR untimePlatform _I
Tutorial_UpdateButton_OnDisplay

i i UserAMBE ditable _ILI
»

Comments: User comment:

2. Go to the Events Tab. S | | =

Department:

1. Double-click the textbox next to the ‘Name’ label on your EndDate: [
window. The Component Properties Dialog appears.

193(1-1

3. Double-click on the Tutorial_DisableControlBasedOnMode
_OnDisplay Method.

Exercise 5 - Jacada Studio for iSeries

Create the Work with Projects Window

Objectives:

+ To provide an exercise that replicates the Work with Projects window in the pre-packaged iTutor application

To build a window that illustrates the graphical alternative to Subfile behavior through the use of a graphical table control

To provide a brief explanation on how to construct and manipulate a table within the IDK

To provide a capability to re-sequence or reload a table based on a Combobox selection of logical sort sequences

To show the use of previously used fields with new short-list representations and the difference in use within a table control

To expose the developer to the use of palette filters to improve usability of the IDK

To go through the process of creating a new field and assigning an appropriate representation to that field when it is added to the display

To add several lines of RPG code to implement one of the Jacada Studio table level APIs

To differentiate Jacada Studio for iSeries table processing from iSeries green-screen Subfile processing

To explain the different runtime behaviors of record selection between the Java and XHTML clients

In this exercise, you create the Work with Projects window of the ITUTOR Application. Your MYTUTOR Application should already contain
seven of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu, Add/Edit Resource and Add/
Edit Projects windows that you created in the previous exercises. In this exercise, we will create a new field that will be used to output a count of
the total records in the table. The table record count is a value that is automatically maintained by the Jacada table API architecture. This is a
handy feature that has no equivalent Subfile instruction in the green-screen world. The APT document completely describes all the API modifiers
and their implementations.

You are here!
N

Tutorial Exercise
Overview

IDK Walk-Through

Your First
Application
Exercise

Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

The major steps to this exercise are:

Window Design Specifications

Create the PPROJ Subapplication

Add the ‘Sort by’ Combobox to your Window
Add a Table to your Window

Add Representations to the Table

Create a Field in the KnowledgeBase

Associate Representation with Field and Create a
Short List

Generate Runtime and Transfer Files
Modify The RPG Program
Compile DDS and Program File on Host
Run Application with a Java Client
Run Application with an XHTML Client

WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication’s
interface, between when it is run with a Java client and when it is run
with an XHTML client. The differences are:

In the Java Runtime:

1. There is a Right Mouse Button menu in the table. Via this menu,
user can perform actions on table rows.

In the XHTML Runtime:

1. There is an Action Column in the table. Via this column, user can
perform actions on table rows.

2. There is a ‘Submit’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

In this Subapplication, you must take into account limitations
stemming from the use of multiple client languages. For the sake of
this example, the requirement is that actions be performed on table
records in both the Java and XHTML runtimes. Since the HTML
client is a browser window and browsers have their own right-mouse-
button menus, it is not recommended to override the right-mouse-
button browser functionality. In the HTML runtime you will create
an action column, similar in functionality to the action columns that
you are used to seeing on the iSeries. In the Java runtime, you will
exploit Java’s ability to allow for a right-mouse-button menu within
the table.

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 2
Create the Work with Projects Window

—lBix
Appication File Edit List View Help
Jusda,
Contact Us!

g Sonty: [Feeme = @

Project# Name Start Date End Date Departmef] 4]

0000 Deaias 0770872002 07/12/2002 e

00002 M 07/11/2002 1041172002 Internal

Delete Project

Work with Assignments

Right-mouse-button
menu

-
=
|

[wiarning: Applet Window

i oals Help
HBack v = < G| Qsearch CaiFavortes Fmeda (| BN S W - 2
Address [] httpifflocalhast @0BH/ITUT GR-xhtml.héml.] @s0 | Jurks)
Jatda
Contact Us!
w SortBy: [Project Number [+, @
- Action | Project# Name Start Date End [
00001 [Project 1 07082002 o7 242
Edit Project z]00002 [Project 2 0771172002 (10711721
Action —
Delete Project
Column Work with Agsignments
Kl 2 >
‘ i
Submit’ Button — > ap D
4 1of
|&]bone [[[BFLocalintranct. 7

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 3
Create the Work with Projects Window

The native behavior of the Java runtime is to move to the next
window as soon as an action is selected from the right-mouse-button
menu. The native behavior of the HTML runtime is to move to the
next window, only when given the command to “Submit”. Therefore,
a “Submit” button will only be needed in the HTML runtime.

CREATE THE PPROJ SUBAPPLICATION

To create the PPROJ Subapplication, you must first open both the
Jacada Studio Interface Development Kit (IDK) and the MYTUTOR
Application.

The New Subapplication Wizard

In this step, you create the PPROJ Subapplication in your
MYTUTOR Application. In this exercise, you apply a prebuilt
Window Layout called Tutorial LayoutforPPROJ to your
Subapplication.

1. From the Subapplication Menu > New ... The New

Subapplication Wizard is invoked. S x|
o e . . : Window | (&
2. In the New Subapplication Wizard, specify the following <'; DW:'V"”
3 1 1 . one FY
Subapplication properties: BasicLavoLt -
MenuLayout < Bad |
Tutorial_BasicLayouk
subapp"cation Name: PPROJ Tukarial Basicl avoutWwithTable @ Cancel |
Tutarial LavoutfarPPRO]
Tutorial_MenuLayouk Help |
Popup Window: Unchecked WeblLookBasicLayout =
Wahl nnkMenl awank I _I_I
1 »

Window Layout: Tutorial LayoutforPPROJ

t’ * Note : All other Subapplications in the ITUTOR Application
containing tables were built using the
Tutorial_BasicLayoutWithTable window layout. The window
layout for PPROJ is special in that it contains /ist controls used
to create the right-mouse-button menu functionality of the Java

. Image with Text Link Control
runtime.
ke
Subapplication June
Description: None
3. Click Finish to exit the New Subapplication Wizard. \ ‘Main Menu’ ¢
Button Image " Frame
A Frame
Elements added to the Window by the Tutorial_ ‘New Project’ Back’
LayoutforPPROJ Window Layout Button o "
ubmi
Did you notice the various elements that were brought into your % Image Button I o @

Application when you selected the Tutorial_LayoutforPPROJ
Window Layout in the New Subapplication Wizard?

4

4

Checking the Contents of the Window

Check the contents of the Window Components Palette to see the
GUI components brought in by the Window Layout.

Check the contents of the Window Fields Palette to see the Window
Fields brought in by the Window Layout.

* Note : Notice that the main difference between the previous window
layouts and this one is in the number of window fields and
variable window components. This window layout has fields
and window components that were not present in the other
window layouts. In order to perform actions on tables, table
columns and table rows, a broader selection of fields and
variable window components is needed.

ADD THE ‘SORT BY’ COMBOBOX TO YOUR
WINDOW

In this step, you will add the Sort by: combobox definition to the
window. The Sort by combobox definition will allow the user to sort
records in the table according to preset criteria.

To Add the “Sort by” Combobox
1. Go to Representation Definition view of the Definitions Palette:

2. Drag the Tutorial_Label SortBy ComboBox_GoButton
representation onto your window.

* Note : This particular combobox is fully functional because it has been
preformatted in the KnowledgeBase, and code to support it’s
functionality exists in the prepackaged MYTUTORIAL host
library. In the optional exercises at the end of this section, you
will create another criterion for sorting, format it into this
combobox and write the host code to support it.

ADD A TABLE TO YOUR WINDOW

To add the table to your Subapplication, from Representation
Definitions view of the Definitions Palette:

1. Drag the representation Tutorial_Table onto your window. The
Table Component Dialog appears.

2. Type TPROJ in the Record name field of the Table Component
Dialog.

3. Click OK to exit the Table Component Dialog.

4. Select the table representation in the window, resize it by
stretching the table via the control handles at its side.

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window

_—
EE |G .
@’_ /wt

Show: Ijutorial 'l

Tutorial_Label_Combobox_Title ;I -
Tutorial_Label_D ateCaontrol
Tukorial_Label_|nputField _I N
Tutorial_Label_QutputField |
kT utarial Label SortBy ComboBox GoBution
utoria_LeftBordeFrame .

Tutnrial | eftCarmen LI .

SsorlBy: Jrrazaimber 6 € °
g D_ . _Y- PrDJectNmber V¢ .

-0 o

D Table Component X

Buffer | menager | s | Foma | Evems

,‘_@ [Definitions Palette - RepeEssall
HE |
.| Show -

Tutorial_StaticText
Tutorial_Submit

torial_T abledction_Button
Tutorial_T ableVariable_Astion
Tutorial_TopBorderFrams
Tutorial_TopBorderimags
Tutorial_TopFiame

.| Tutorial_Topimage

7~

New Project

@H

o D

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 5
Create the Work with Projects Window

ADD REPRESENTATIONS TO THE TABLE

In this step, you will first use the Show filter to select a
representation from the full list of representations in the Select Field
Representation dialog that pops up when you drag a field onto the
window. You will then add the remaining Representation Definitions
to the table by dragging fields onto your table from Field Definition
View of the Definitions Palette.

FYI: The Show Filter

The Show filter can be found preceding lists of representation

definitions that exist in the KnowledgeBase. The purpose of the Show _»

filter is to allow the developer to view Representation Definitions R e ol

according to specific criteria. For example, only representations frstewatisrer e N

connected to a certain field or representations with a certain prefix

can be viewed in the list. Using this filter shortens the list of

representations and allows the developer to focus on the @ O

representations that he is working on. The Show filter criteria are L

fully customizable by the developer and can be set to include as e * =
many criteria options as you choose. The Show filter exists in three =~ —22= EEEEN

Representation Definitions| [| Show: [_Tutorial [=|
Tutorial_Add -]

] e
—» Shawy; Ijuturia\ h -

Tutorial_tdenu_BottomLeft

wissun — Representation Checkborst ' -
utorial_Button_M aint ¢ o I astate Tutorial_Menu_BottomRight
utorial_Cancel De fln,tlons I_L;H . Tutorial_Menu_Lefllmage

places in the IDK interface:

1. Representation Definitions View of the Definitions Palette

Tuerl Checkbara! Tutarial_Menu_Rightimage

in Design View 2 Tt Dane in the KB Tutorial_ Menu_TopLeft
[CheckBox | Tutorial_Menu_TopRight
. Tutorial_ColumnLabe|_Checkbox_Delets Tutorial_Menu_windowHeader _I
2. The Select Field Representation dialog in Design View i ok s Conbtr [el Tuloriel_ Menultem_Lis
sl e shel 11t ikl e Tutorial_MenuQptians
[Tutorial_OutputField =

3. The Representation Definitions Pane of the KnowledgeBase
interface (Lower Left Pane)

* Note : Use the button with the picture of an owl ®E (on your standard toolbar) to access the KnowledgeBase.

- Field Definitions

Add a Field to the Table and Use the Show Filterto - - sonpy: - [Froeanimon 5 @ - View
Find the Right Representation o @ _

| ETTE— [
1. Click on Field Definition View of the Definitions Palette. _ show: [Tuorsd =] | EIEIEIE N
2. Drag the JSTSEL field onto the table. The Select Field ' Repres | A e || | Fooamr
Representation Dialog appears. Gt e heb | i

Tuto:: Accelerator JSTACT
* Note : Make sure you drag the field onto the TABLE and not the Tutoridf stabloEdt jglggé
window. TUEOTIS CheckBo JSTMSG
UM ComboBox ISTROW
Date
3 : P — |LJSTSEL
3. Choose the _Tutorial filter from the Show filter combobox in the o ' - %l @

Select Field Representation dialog. Only representations with the "= - | TMRACT
- . o ShitE 56 .
prefix ‘Tutorial’ are shown in the list of representations. ol

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window

4. Select the Tutorial PPROJ_Table_ActionColumn

representation from the list of representations definitions. © o Seby @
5. Click OK to ex1t. the dlglog. Your representation is added to the r——— =l
table. It is associated with the field that you dragged from the T, s 5) —%
. [V utorial
Definitions Palette. oo RJ
presentation definitions: FDSTAT
Tikore PASRSC Menulter: List] Lce'l Egmg;
Tuk PASST_Menult Lisk
Totoria FRRO_MenuIten_List_D Help | FDTITL
Add Remaining Representations to the Table : T“t°’!a‘f"""°J e e e
JSTFOC
Add the following Representation Definitions to the table by : Tatorial PRESO_Menultem_Lit s JSTMSE
: . . : Tutotial_smalDefaulkButton JSTROW
dragging fields onto your table from Field Definition View of the S TR _>IJ | [JsTseL]
Definitions Palette. Choose the representations associated with the o m:TfCLT

field from the “Short List” of favorites. SRR I [submit)

The place in the table onto which you drag the representations is not
important. Columns will be created in the order in which the
representations are dragged onto the table. If the column order is not
to your liking, you will learn how to change it later in this step. To
add the remaining Representations to your Subapplication, refer to

the table below:
Window Fields Representations
FDPNUM Tutorial ColumnLabel OutputField
. i Sort By: PrujedN‘umber hd
FDPNAM Tutorial_ColumnLabel OutputField B e
Action [Project#] Name [ES
FDDEPT Tutorial ColumnLabel OutputField B I i itz
- - Emmm -
FDBDAT Tutorial ColumnLabel OutputField
FDEDAT Tutorial_ColumnLabel_OutputField ik
@
FDPCOM Tutorial ColumnLabel OutputField sl
b =l

* Note : In the last exercise, we used these same data fields. We chose
short list representations appropriate for displaying a label to the
left of the field control. In this exercise, we are using the same
fields with short list representations suitable for a table. In this
case, you will see the label at the top of the column.

Testing the Table’s Functionality

Because of the amount of representations added to the table, the
columns in the table now exceed the table length. In Design View,
you can not see all of the columns added to the table. To see all of the
columns added to the table and verify the functionality of the
horizontal scrollbar:

EXERCISE 5 - JACADA STUDIO FOR ISERIES |7
Create the Work with Projects Window

1. Go to Test View by clicking the B Test View Icon in the
Standard Toolbar.

2. Click and drag the Table Scrollbar to scroll through the table
columns and check that the correct columns were added in the
correct order. You can also click the arrow buttons to the left and
right of your scrollbar to scroll the table in each direction.

Manipulation of Table Columns

In Test View you can manipulate table columns. You can change the S B
order in which the different columns are placed, and you can also " ;
change the width of each column. E'"’:M:.

To reorder table columns: Iz Do line Shift+drag header

. S roject Number =
toresize > ot 5l @ 45 reorder
New Project \

Fro) Name

1. Select a Table Column by clicking on its header.

Start {4

2. In Test View > Hold down the Shift key on your keyboard.

3. Drag the table column to the left or right to move the column to its 4—/C lick and

new location. drag scrollbar

« N r 3]

To change the width of a table column: ® A
Click scroll arrows to scroll to the left / right > €

1. In Test View > Place your Cursor on the line that divides between
two table headers. The cursors form.will change.

2. Drag the line between the table columns to the left or right to
resize the adjoining columns.

CREATE A FIELD IN THE KNOWLEDGEBASE

In this step, we create a field that will be used to output a count of the
total records in the table. We will then define the field’s properties.
We will define this field globally, in the KnowledgeBase.

To create the field: 7 Jacada Studio for iSeries Application: MY
% KnowledgeBase Definitions
. . . File Edit | Defi Tools View Panes
1. Click the KnowledgeBase icon ¥ in the Standard Toolbar. 0 'w
The KnowledgeBase window opens. New Representatlih, , — Ctr+R
Field Definit — 2
. . Window Layouts, ,,
2. From the Define menu > choose New... The New Field Definition o FDACOL " election Definitions... E"
. i FDEDA Function Definitions. .. e
dlleg appears. - FDEILL New Field Definition]
- FDDEF User Triggered Methods. ..
. . . ‘ dnsmes orom |
3. Type FDTOTL into the Field name area of the New Field | e . e
Definition dialog. - FDHEA__foating Menus. ~x el | b |
- FDLNAM 4) -
4. Click the OK button to exit the New Field Definition dialog. The : —
K . . . Representation Defmltlnns| D | Show I_Tutonal x| | :
new FDTOTL field is added to the list of fields in the Field Tawa A H

Definitions Pane. The Field Definition Properties Pane becomes
active.

To define the field’s properties:
1. Select the FDTOTL field in the Field Definitions Pane.

2. Drag the interface divider downward until you can see the three
types of Default Data Flow (Output, Input, Both) in the Properties
Tab of the Field Definition Properties Pane.

In the Properties Tab of the Field Definition Properties Pane:
3. Set Data Type to Numeric

4. Set Data Size to §

5. Set Decimal Positions to 0

6. Set Default Data Flow to Output

7. Click the Representation Information Tab in the Field Definition
Properties Pane.

8. Type Total Records in Table into the Label field.

9. Click the Update button to update the field’s properties in the
KnowledgeBase.

10. Save your KnowledgeBase settings by clicking the Save
€ button in the KnowledgeBase interface.

11. To exit the KnowledgeBase:

From the File menu > choose Exit.

or

Click the Close button on the upper right corner of the window.

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 8
Create the Work with Projects Window

=1o1x|

1§ knowledgeBase Definitions

Fle Edt Define Tools View Panes

Properties Tab

O dE|$ =k

@ Drag 1o résize

Save
Button

nowle

| File Edit

Save KnowledgeBase
Load knowledgeBase

T FDPCOM -

o° =i % R presentation Information Tab,
T
TEDETT Properties | Representation Information =

Field Definitions: I Representation Information :|

foven
Fo o~ Field

9 =" Definition

FTek Properties
@ Pane
JSTACT

JsTEOL Default Data Flow
JSTFOC Jr(:._;gutput: € Input Both i : ' =
==

=

Properties

FDPHAM
FOPNUM
FDRCOM
FDRESN
FDSORT
FDSTAT

FDTACT

Field pame:

Data bype:

Data size: 5

Decimal positions: [

Hepresentaton Dehribians| [| §
Tutorial_&dd S
Tudorial_Back

Tutorial_ Button_MainMenu
Tuhorial_Button_NewProject
Tudorial_Checkborvoll
Tudorial Columnlabel Cher:

Component nrvar\gemj

T
-

Froperties |

Description:

=lolx|

4§ knowledgeBase Definitions

FDPCOM -

FDPM&M
‘ 8>Labe\: [Total Records n Takle

- FDPHUM
Representation definitions short lisk:

Update Revert

FDRCOM
FDRESH
- FDSORT
- FDSTAT
FDTACT

[aye)
Field —

FDTASK - L=
- FDTITL Definition

F['T:TL _I .
JE‘,TT Properties
Pane

- JSTOOL
JSTFOC
ISTHSE H =

By

Repiesenttion Definitions| [| & [E— ,mamggm:‘

o e
=

Properties I
Tutoria_Add -
Tutarial_ Back
Tutorial_Button_MainMenu
Tutora_Bultion_NewFioject
Tutoria_Checkbosral
Tutorial_ColumnLsbe|_Chee

Description:

=l0lx]

o2

Close

dgeBase Definitions

Define Tools Wiew Panes

| o8 | T=

-

Summary Info...

Button
Properties] .

- FDPCO
- FDFMA

[Ipdate

M
[l

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 9
Create the Work with Projects Window

Associate Representation with Field and Create
a Short List

In this step, you add the new FDTOTL field to the window. You will
then associate a representation definition with this field, and put the
chosen Representation Definition in the short list of favorite
representations for this field. These changes will be saved to the
KnowledgeBase, and will allow you to reuse this field, with its new
short list of favorites, throughout the application. Doing this will
ensure that whenever this field is dragged onto a window, the
associated Representation Definition will show up in the field’s short
list. If the Representation Definition is chosen from the fields short
list, it will be automatically connected to that field in the buffer.

Add FDTOTL to the Window

To add the new field that you created to the window:

. Drag FDTOTL onto your Window (not Table) from Field - - W@—J = |_| 1‘3 | o8 |

[

1
Definitions View of the Definitions Palette. Drag the field onto the Representation definitions: e MOENEM B
ancel
area under the table. The Select Field Representation dialog e e 2?;52—' || FoRcom
| Tutarial_Label_Combobox_Task HBIP r | FDRESN
appears' . |Tutorial_Label Combobox_Title _| — | FDSORT
) Tutor\al_LabeI_Datquntrol I FOSTAT
2. Choose the _Tutorial filter from the Show filter combobox in the Rl @ T FDTALT
L= o .) L FDTASK [|
Select Field Representation dialog. Only representations with the Y| Mgl s v ForTL @
prefix ‘Tutorial’ are shown in the list of representations. | (et | L|_I :ngm
: JSTCOL 5
3. Select the Tutorial_Label_OutputField representation from the - Maddto short st @ =
list of representations definitions. o
4. Check the Add to short list checkbox.
5. Click OK to exit the dialog. Your representation is added to the
window. It is now associated with the field that you dragged from
the Definitions Palette.
6. Click the Apply Design Changes button in your Standard Toolbar
to apply the changes of your design. ==
File Edit List View Help
. Fok
What your Window Should Look Like

This is what your windows should look like at the end of the last step. <=
Notice that the label of the representation that you added, : e _ @ :
automatically received the text ‘Total Records in Table’. If the Bz T T R T
representation is not placed correctly, select the representation
components and place them according to the diagram to the right.
You are now ready to generate a runtime.

Total Records in Table: Cutput @ :

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window | 0

GENERATE RUNTIME AND TRANSFER FILES TFie
To generate a Runtime and transfer the files to host: g‘;:n :
1. From the File menu > choose Generate Runtime... The Generate Cluse Application
Delete »

Runtime Wizard is invoked.
Application Properties. ..

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

KnowledgeBase. ..

Save All Chrl+5
.) zenerate Runtime. .,
Runtime Type: Java and XHTML T L3
Jacada Server Ext
Platforms: Windows NT(2000) x86

Subapplications to
include: All

Subapplications to

Process: Only new and modified
3. In the File Transfer screen, specify the following information, x|
then click Next: =— @
v Transfer files ’W
Transfer files: <Checked> riosti |<tostPaddress> <gack |
Lagin user: <serMame = |7 Save Cancel |
Host: <YourHostIPAddress> Login password | [oo |
Login User: <YourUserNameOnHost> Terget lbrary; [PHTHTORIAL
Login Password: <YourPasswordOnHost>
Target Library: MYTUTORIAL
r.’ * Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIALO1) as the Target
Library.
4. In the Specify Host Connection and Application Information hation x|

Port number: I 7666 E

Host: <YourHostIPAddress> Hast application
% Default € Custom

Port Number: 7666 reprogran: EG =] —
Initial Program: PMENU Library list: IMVTUTORIAL JACADq I

Library List: MYTUTORIAL JACADA

screen, specify the following information, then Click Next: ot IW ot - @
% Back

Cancel

Pl

'_.’ * Note : If you are working in a multi-evaluator environment, remember

to have your respective Library (i.e. TUTORIALO1) be the first
library in the Library List entry and include the JACADA
library after your library.

4

4

5. Click Finish to exit the Generate Runtime Wizard, and commence
with the compilation process. The Generating the Runtime dialog
appears.

6. Wait for the Runtime Generation process to come to an end.

7. Click Close to exit the Generating the Runtime dialog.

Files Created By the Generate Runtime Process on
the Development PC

Subapplications containing tables contain two separate records: a
window record and a table record. Look in the JacadaStudio\appls\
MYTUTOR\gds directory - 7 files were created on the development
PC for this Subapplication:

1. RPG_OPM.PPROJSD - The Window Record DDS physical file
2. RPG_OPM.PPROJ#D - The Table Record DDS physical file

3. RPG_OPM.PPROJSP - The Parameter List Copybook for the
Window Record

4. RPG_OPM.PPROJ#P - The Parameter List Copybook for the
Table Record

5. RPG_OPM.PPROJSF - The File Specification Copybook for the
Window Record

6. RPG_OPM.PPROJ#F - The File Specification Copybook for the
Table Record

* Note : The dollar sign ($) is used in the name of the files generated for
window definitions. The pound sign (#) is used in the name of
the files generated for table definitions.

7. ShellProgram.RPG_OPM.PPROJ - The Shell Program.

* Note : Only one Shell Program is generated per Subapplication.

Libraries Objects and Members Created by the
Generate Runtime Process

When you choose to transfer the files created by the Runtime
Generation process to the host by checking the Transfer files
checkbox in the Transfer Files screen of the Generate Runtime
Wizard, the library structure in the diagram to the right is created on
the host in the Target Library that you specified. Because the RPG
code of the PPROJ subapplication was prepackaged for you, the shell
program is the only file that is not transferred.

EXERCISE 5 - JACADA STUDIO FOR ISERIES

1

Create the Work with Projects Window | 1

-10ix|
[@]

~| e |JLinks »

#]| RPG_OPM,PMENU$P

Q ShellPragram . RPG_OPM.PPRO]
|58 RPG_OPM,PPROJ#D

|8 RPG_OPM.PPROJ#F

|38 RPG_OPM.PPROJ#P

|8 RPG_OPM.PPRO§D

|38 RPG_OPM,PPROTSF

[RPG_OPM,PPROTSP

@ ShellPragram . RPG_OPM.PRESD
|| RPG_GPM, PRESO#D

|8 RPG_OPM, PRESO#F

|38 RPG_OPM,PRESO#P

|38 RPG_OPM.PRESO4D

|38 RPG_OPM. PRESO4F

|38 RPG_OPM.PRESO4P

g |@, My Computer i
7 — » | MYTUTOR |
Objects - » QRPGSRC | | . QDDSSRC
|» PPROT PPROJTSD
I PPROJSE PPROJHD

Iembers < —» PPROJH#F

| PPROJSP

L PPROJH#P

4

Mobiry THE RPG PROGRAM

In this section we will add RPG code to retrieve a count of the
records in the table and move that value into the field we created
earlier (FDTOTL) in order for it to be displayed. The Jacada Studio
table management API automatically maintains a table record
counter. In order to retrieve this counter, we will insert a small piece
of RPG code that will set the API Modifier Field (GDSMOD) to a
value of "GDSGL" (get line), and then execute a READ to the table
record. The READ will retrieve the current count of table records and
place that value in an API field called GDSEC. From there we'll
move that value to the FDTOTL window field. The WRITE
instruction that actually sends the window is already in place.

* Note : For a full description of all the API fields and their uses, please
refer to the API document.

In the screen-shot to the right, lines 87.01 through 87.04 were added
to the prepackaged PRG code.

Manually insert the following lines of code before line 88 in the
prepackaged PRG program. Line 88 contains the comment “Write
and Display Window”

A
Y

C* Get Record Count in Table

© MOVE GDSGL GDSMOD
© READ TPROJB 99
© MOVE GDSEC FDTOTL

CompILE DDS AND PROGRAM FILE ON HOST

In our previous exercises all the window data was defined in a single
Physical File DDS member and was managed with a single Special
File. Table processing brings another dimension to the development
process. Windows that implement Tables are conceptually similar to
Display Files that implement Subfiles. The Window itself can be
related to a Subfile Control Record Format while the Table portion
can be related to a Subfile Record Format. Just like I/O to a Subfile
Record Format takes place in local program memory on the host,
Table I/O is also a local memory operation. Similarly, /O to the sub-
application Window that contains the Table actually gets sent to the
client for display, just like I/O to a Subfile Control Record Format.

In order to differentiate between Table I/0 and Window 1/0, Jacada
Studio generates separate Physical File DDS members and Special
File definitions for the Window record and the Table record. This
separation at the file level instead of a format level provides some
very advanced flexibility in determining where and how a table can
be loaded at the host. (Advance table management is not discussed in
this tutorial.)

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window | 2

FMT C ..., CLOMBINEZNA3Factorl+++0pcdeFactor2+++Resul tLenDHHiloEglo
pEss. 00 C FOSORT IFEQ ' 5TARR*

BEBE.0A C EWSR LODLS2

BEET. 00 C ENDIF

geaT. oL C#GET RECORD COUNT IN TABLE

FEBT.02 © MOVE GDSGL GDSMOD

0EBT.03 C RERD TPROJEB 99
BEsT.04 © MOVE GDSEC FDTOTL

pOEE. 0e Ctlrite and Display Window

pasg.0n C LRITEPPROIE

pEge. on C RERD PPROJB 99
pa9l.0n Cx

pE9z. 0n C JSTACT IFHE 'EXIT

Prompt type . . . % Sequence number . . . DOGE. 08

Data area

F3=Exit Fd=Prompt F3=Refresh Fll=Prewious record
Flz=Cancel F23=5Select prompt F2d=More keys
=

1

4

As you compile the files and program on the host, remember that two
Physical File DDS members must be compiled because there are two
pieces to the display. Also remember to add the JACADA library to
your library list.

Compile the DDS physical files PPROJSD and PPROJ#D as well as
the RPG program file PPROJ in your MYTUTORIAL library.

RUN APPLICATION WITH A JAVA CLIENT

In order to run your Application, you must first verify that the Jacada
monitor is active. Only then can you run your Application.

Run your Application with a JAVA Client

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localost:8080/
MYTUTOR html

3. Click Finish to exit the Run Application Wizard. The Jacada
Server is activated and your Default Browser window is opened to
the Jacada MYTUTOR. html page.

4. Type your iSeries Username and Password.

5. Click the OK button.

Navigate to the Work with Projects Window

Navigate to the PPROJ Subapplication by using the diagram
provided for you to the right.

* Note : Now that this window is built, you can choose the Edit Project
option from the action column to navigate to the Add/Edit
Projects window (PADDPR) in Edit mode.

[File

e
Open

Close Application

Delete

Application Properties. ..

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window |3

KnowledgeBase. ..

Save Al Chrl+5
aenerate Runtime. ..
1
Exit
S SR
PPROJ
PMENU \ Work with Projects
Main Menu :7"’" =
W o=
e — Ll % ™ \ A
-
PADDPR L—E@ e
Add / Edit Project]
- |
PASSIT
Work with Assignments

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window |4

What your Window Should Look Like in Java =

This is what your windows should look like in the Java client.In the s
. Contact Us!

Subapplication, right-click on table rows to invoke the selection

options. Select the options to invoke the actions associated with

them. ‘culr Sonty [Fomimier =1 (@)
Froject# Name. Department StanDate[[2]
Close the Jacada Server o> I v 1012

00003
00004
00005 |New devmodel Other 10/21/2002

When you are done running your Application 00006 Budetiink Dev Fnence Tz

Marketing 03/30/2002
Other 12/16/2002

work vwith Assignments

Kl

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the Total Records in Teble: 000G iece
‘Exit Application’ button in the Main Menu window.

. . \ iz |
2. Type quit in the Jacada Server command window to close the |Earotiereimn

Jacada Server.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

RUN APPLICATION WITH AN XHTML CLIENT

Run the executable created during the Runtime Generation process [File
from within the development environment: Mew »
Open k
1. From the File menu > choose Run Application... The Run Close Application
Application Wizard appears. Delete D

Application Properties. ..

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

KnowledgeBase. ..

Save Al Chrhts
Runtime Type: XHTML Senerate Runtine. . ,
Port Number: 8080 Exit
Web Server: Integrated HTTP Service
Application URL: http://localost:8080/
MYTUTOR-xhtml.html

3. Click Finish to exit the Run Application Wizard. The Jacada
Server is activated and your Default Browser window is opened to
the Jacada MYTUTOR-xhtml.html page.

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your HTML client Application.
6. Navigate to the Work with Projects Window.

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window | 5

What your Window Should Look Like in HTML

.. . o . Gbsck + 5 - (D 2] | Qearch Cirevortss dimeds <3| - 5 B - o
This is what your windows should look like in the HTML client.In [orcneiren - =l o [
the Subapplication, click the Action Column in the record row you p Jok T
wish to select. Select the option to invoke the action. Contact Ust
w Sort Project Number |~ @
[Action [Project# Name -l
[Edit Project =000t [Buciget links Finance
s Jooooz — [Project Tracking Intemal
i [e 00003 Productapplicaion Marketn
Work with Assignments ‘DDDM New APl Other
j‘DDDDE New dev modeal Dther
100006 [Budiget Link Dev Finance = -
3 | i
Total Records in Table: 00006
oD D
q ~
& | | Local intranet. 4

The final product of your efforts in this exercise. The look and
behavior of the PPROJ Subapplication, in an XHTML Runtime.

4

N

Exercise 5 - Jacada Studio For iSeries

How It Works: The Work with Projects Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you
ready?

The ‘Submit’ Button

A “Submit” button was added to the Subapplication by the window
layout. For the sake of this example, we have created a method that
shows or hides the “Submit” button according to the client type. In
this step, you see how the “Submit” button’s functionality was
controlled in such a way, that will allow the button to only be shown

. m-m - m
in the HTML runtime. - m:@ ‘ @

To see how this was done:

1. Double-Click the Submit button on your Subapplication. The
Component Properties Dialog appears.

2. Go to the Events Tab of the Component Properties Dialog.

3. In the Event combobox > choose the OnDisplay event. #0 = DoMethod: Recelver: ~System” Method: GetSharedUservariable Parms: { *"SU_RTFlag™)
If: Cond: *#0 == "lava""
DoMethod: Receiver: “this™ Method: HideControl Parms: {)

4. Double click the Tutorial HideShowControlBasedOn EndIF:
RuntimePlatform method.

* Note : This is a very simple method that checks the value of the
SUV_RTFlag “shared user variable” (variable from variable
pool shared by both client and server). If the value of this
variable equals the string “Java”, this button is hidden.

5. Click OK to exit the Component Properties Dialog.

Actions Performed on Table Records

The requirement is that for each table record, three action options be
available during runtime. Since this table consists of a list of projects
and their associated data, the possible actions for table records in this
table are:

Work with Assignments Takes you to the ‘Work with
Assignments’ window

Edit Project Takes you to the ‘Add/Edit
Projects’ window

Delete Project Deletes table record

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window |7

FYI: The MenuOption and MenuOptionTable Window Components

The MenuOption component is a standard generic component that ships with the default Jacada Studio KnowledgeBase (look for it in the
Window Definitions Palette). When dragged onto the window or table, it creates a right-mouse-button menu through which the user can
access the actions defined in its component properties dialog. It also creates a Menu Item in a Menu (that you specify) on the
Subapplication Menu Bar. In the default Jacada Studio KnowledgeBase there are two representations that create right-mouse-button
functionality: MenuOption and MenuOptionTable. The First handles data flow through fields defined in the Window records buffer. The
latter handles data flow through fields defined in the table records buffer.

|
- R EENEIEY
A Menu Wlth_ File Edit | List Wiew Help Show:l vl
Menu Items in =
the Delete Project % . Link. a
The MenuOption MenuOpti
3 3 Work with Assignments enullphion
Subapplication Representations MerulptionT able _I
menu Bar MenuT emplate
OKButton
Mk Buttanbd s it e larator ;I
.’ * Note : Remember that a Subapplication with a table consists of two records: The window record and the table record. We will discuss the

implications of this later in the Generate Runtime step.

Table MenuOption Component in the Java Runtime LI

File Edit | List “iew Help

Delete Project k

‘Wwiork with Assignments

To exploit the ability of the Java client language to allow for a right-
mouse-button menu within the table, the generic MenuOptionTable
representation was used to create a Menu with three Menu Items.
Unknowingly, you have already added these items to the
Subapplication through the Tutorial_LayoutforPPROJ window
layout.

Action Column in the XHTML Runtime

In the XHTML runtime, the Action Column is the first column that
you see in the table. The Tutorial_TableVariable_Action
representation used to create this action column consists of two
window components: A Static (text) component used to display the
text on the column header and a Combobox component used to
display the action options available to the user. During runtime, a
combobox will appear next to each record in the table. It will provide
the user with a pull-down menu, from which he will choose an action
that will be performed on the associated table record when the
window is submitted. This representation is connected to a field
called JSTSEL, through which data will be transferred to and from
the host during runtime.

F.’ * Note : This particular combobox is fully functional because it has been
preformatted in the KnowledgeBase, and code to support its
functionality exists in the prepackaged MYTUTORIAL host
library. In the optional exercises at the end of this section, you
will create a combobox option, format its host and window
values and write the host code to support it.

*~

Because the table actions available through the Action Column will
be accessible in the Java runtime via the MenuOption component, we
will hide the action column in the Java runtime to avoid redundancy.
In this step, you will be introduced to the KnowledgeBase method
used to control the appearance of the Action Column according to the
chosen runtime platform. This method hides the Action Column in
the Java runtime.

View the XHTML Action Column Combobox in Test View
To see the Action Column Combobox in Test View:

1. Go to Test View.

2. Click the area UNDER the table header with the title - “‘Action’.

View the XHTML Action Column Properties

In order to pass values to the host during runtime, the combobox
component of the Tutorial_TableVariable_Action representation
used to create this action column has already been connected to the
JSTSEL buffer field. Since the combobox component sits in a table,
we cannot click the representation and see the associated field
selected in the Window Fields Palette (we only see information
associated with the selected table). Therefore, to view the connection
between the combobox component and the buffer field:

1. Go to Design View.

2. Double-click the first record row in the area UNDER the table
header with the title - ‘Action’. The Combobox Component
Properties Dialog appears.

* Note : Make sure that the component properties dialog says
‘Combobox Component’ in the header and not *Static
Component’. If it says ‘Static Component’, this means that you
double clicked the header and not the combobox. Cancel out of
the dialog and try again.

3. In the Combobox Component Properties Dialog > go to the Buffer
Tab. Notice the JSTSEL buffer field attached to the combobox.

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window |8

o [=] 5]
Fle Edt WView Help

[
e
Contact Us!

i °
Action [Project# [Name [Department |2
4 4 k3
[=lolx|
File Edit View Help
P
Contact Us!
e o
: :
i Action [Froject#] Name | Department |4
. @
a ; s
ComboBox Component 1[

i Manager I Style I Farmat l Events

[V Connect to field in record 'TPROT'
Field

Marne:

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 1
Create the Work with Projects Window | 9

Showmg and H|d|n.g the XHTML Action Column I — Double-click the
According to Runtime Platform Action column’s
header

In order to hide the Action Column in the XHTML runtime, a method
called Tutorial_HideShowColumnBasedOnRuntimePlatform was

attached to the OnDisplay event of the Static (text) component of the - s Fo
representation used to create the Action Column. This method checks v
the value of a variable that is populated when the Application is . am—

launched. If the value of the variable equals Java, the column is hidden. If
the value of the variable equals XHTML, the column is shown. To view
the association between the column and the method:

1. Double-click the Action Column Header. The Static Component
Properties Dialog appears.

2. Go to the Events Tab.

3. View the Tutorial_HideShowColumnBasedOnRuntimePlatform
method attached to the OnDisplay event of the static component.

* Note : Notice that the method was attached to the column header (Static
component) and not the combobox component. Buffer | manager | stvle | Fomar | Evens
Event: IOnDispIay j

In Both Cases:

Activate method:

Tutorial_ErrorFocus_OnDisplay d
Tutorial_HideShowColumn_OnDizplay
Tutorial_HideShowCol B ased0nRuntimePlal
Tutarial_HideShowControlB azed0nMode

i+ Tutarial_HideShowControlB azeddrRuntimePlatform

The RPG code loops through the table and processes each table entry
according to the value set by the user.

4

Exercise 5 - Studio for iSeries, Jacada

Optional Exercises: Let’s Break it Down - PPROJ

If you’re feeling like you need to break it down some more, how about adding a sort option to the ‘Sort by’ combobox. In this section you will
learn all of the steps necessary to sort the table records by project name. You will create a combobox option, format it’s host and window values
in the IDK and write the host code to support it. Are you ready? Well, what are you waiting for?

The major steps to this exercise are:

Add a Value to the ‘Sort by’ Combobox
Associate Screen and Window Values

Generate a Runtime
Create Fspec and Modify the RPG Program SertBy: [PoectName | (@)
Compile Host Code and Run Application n

Action | Froject # I Mame | Start Date
ADD A VALUE TO THE ‘SORT BY’ COMBOBOX
. . ComboBox Component ﬂ

1' GO to DeSIgn Vlew. Buffer I Manager] Style] Format @vents
2. Double-click the combobox component of the ‘Sort by’

representation. The Combobox Component Properties Dialog pr

<~ ®
3. Go to the Format Tab in the Component Properties Dialog.

4. Click the Format Button. The Format - Screen and Window
Values Connection Dialog appears.

In the Format - Screen and Window Values Connection Dialog:

5. Identify the Screen and Window areas of the dialog. See the image
diagram to the right for help identifying these areas.

* Note : You will define the value passed to the host in the Screen area. - (:) ot
You will define the string that appears in the combobox during { {
. . 5 Read... Write ., FErfiove: Sebs Derul
runtime in the Window area.
5\/[alues‘ [Values
& Show
ﬂ € Edit j
Screen Area Jj—— Window Area |
" ECIEEE o
I N Me i
Add I Requlir expression) Add

6. In the Connections area > select the Edit radio button

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window

7. Type ‘NAME” into the name field in the Screen Area of the
dialog,.

Cut

8. Click the Add button to add the value to the values list in the
Screen Area.

9. Type ‘Project Name’ into the name field in the Window Area of
the dialog,.

—Screen

10. Click the Add button to add the value to the values list in the
Window Area.

Connections: window ——
Values
£ show
&+ Edit
Paste [}\
C t
Rename &I
Connect Al |
New valug:
Cut

Mew value:

A

Paste |

Rename

Mame:

Add . . Feequlat expression

e |

—window

Yalues

Mew value: ‘

Mame:

add k@

Screen Area
Values List

Window Area
Values List

x|
Representation definition name:
ASSOCIATE SCREEN AND WINDOW VALUES Conpenrt e
~INI format i~ Default value
1. Select the NAME value from the values list in the Screen Area i Project Muber
and the Project Name string from the values list in the Window) fait [Enr | [|
~—— Connection
Area, - Sereen x‘onnect\ons: [~ Window
Walues:
2. Click the Connect button in the Connections Area. i _ | i o
STAR Paste - Paste
3. Click the OK button to exit the Format - Screen and Window e e
Values Connection Dialog. o Mo vl
Mame: MAME Mame: Project Mame
: Connect
View the Connection Between Screen and Window = - Button

Values

concel | e

1. In the Connections area > select the Show radio button.

2. Select any of the values in either of the values lists to see their
associated counterparts.

2
1

GENERATE A RUNTIME

In the IDK, Generate a Runtime to compile the Application,
transfer only new and modified files to the host.

CREATE FSPEC AND MoDIFY THE RPG PROGRAM

In order to add make the Project Name sorting option functional, the
screen values formatted into the combobox must be supported by the
RPG code and an F spec must be created. Perform the following steps
on the host machine to make the Project Name sorting option
functional. Use the code samples in the column to the right to guide
you through the procedure.

1. Add an F spec for the LPROJEC4 logical file sorted by Project
Name to the RPG program. On the continuation line of the F spec,
rename record PROR in column 54 to PRORM.

2. In the RPG program PPROJ, add IF logic after the DO loop to
check the sort field (FDSORT) for the NAME value that you
formatted into the combobox > then call the LODLS3 subroutine
(LODLS3 subroutine will be created in the next step).

(98]

. Add the LODLS3 subroutine to your RPG program by copying
the LODLST subroutine and pasting it after the LODLS2
subroutine.

4. In the LODLS3 subroutine, change SETLLPROR to
SETLLPROR4. Change PROR to PROR4.

ComPILE HoST CODE AND RUN APPLICATION
You’re all done! So you want to run your Application? Its easy, just:
1. On the host machine, Compile the PPROJ RPG program.

2. Make sure the Jacada Monitor is Active.
3. From the IDK, Run the Application.

Congratulations!

FLPROJEC4IF E
F PROR

FDSORT

*LOVAL

*LOVAL

EXERCISE 5 - JACADA STUDIO FOR ISERIES | 2
Create the Work with Projects Window | 2

A
A

KRENAMEPROR4

K DISK

A
@ e
IFEQ 'NAME'

EXSR LODLS3

ENDIF
A
M
® H
SETLLPROR
READ PROR 88
A
A
® A
SETLLPROR4
READ PROR4 88

	Part IV - Exercises
	Tutorial Exercise Overview
	1. Tutorial Exercise Objectives
	IDK Walk-Through Objectives
	Your First Application Exercise Objectives
	Main Menu Exercise Objectives
	Add/Edit Resource Exercise Objectives
	Add/Edit Project Exercise Objectives
	Work With Projects Exercise Objectives

	2. The Jacada Studio Workflow Overview
	In the IDK:
	On the iSeries:
	In the IDK:

	3. The Jacada Studio Development Architecture
	In the IDK:

	4. The Shell Program
	Location of the Shell Program

	5. Other generated files relevant to the Shell Program
	Files related to the window
	Files related to tables
	For Example:
	Installing the Shell Program
	To install the Shell Program:

	Keeping Buffer Definitions in Sync
	Contents of the Shell Program
	Copybook PMENU$F is used by program PMENU
	Copybook PMENU$P is used by program PMENU.
	File PMENU$D defines the menu screen buffer for program PMENU.

	The Following Comments Describe the Shell Program Example Above (PMENU):
	Adding your Code to the Shell Program
	Controlling the Initial Contents of the Shell Program

	6. The Jacada Studio Runtime Architecture
	7. What You Can Expect
	Columns in the GUI Information Section
	Columns in the iSeries Files Section

	Walk-Through of the IDK Interface
	Objectives:
	1. Opening the Jacada Studio for iSeries IDK
	2. Opening the ITUTOR Application
	3. The Application Combobox
	4. The SubApplication Combobox
	The Subapplication List

	5. IDK Views
	Design View
	Test View

	6. IDK Menus
	7. The Standard Toolbar
	8. The KnowledgeBase
	Accessing the KnowledgeBase
	The KnowledgeBase Interface
	KnowledgeBase Definitions

	9. Apply Design Changes
	10. The Design View Palettes
	Usage of Design View Palettes
	Viewing the Design View Palettes
	Bring Palettes to Front
	The Control Editing Palette
	The Definitions Palette
	The Window Components Palette
	The Window Fields Palette
	Using Palettes to View The Relationship Between Window Components and Window Fields

	11. Setting Up Your Workspace
	Configuring the Grid
	Toggling the Grid on and Off

	12. Control Editing and Manipulation Options
	Modifying Component Properties
	Deleting Components
	Renaming Components

	Selecting Controls in the GUI
	Leading Control
	Selecting Controls Individually
	Selecting Controls by Group
	The Select Options in the Design Menu
	Clearing Selected Controls

	Control Editing and Manipulation Options
	Calling up the Arrange Menu with the Right Mouse Button
	Control Manipulation via Keyboard Arrows

	Your First Application
	Objectives:
	1. Window Design Specifications
	2. Open the Jacada Studio for iSeries IDK
	3. Create an Application
	4. Create a Subapplication
	5. Add GUI Components to the Window
	Add a GUI Component and Edit Control Properties
	What your Window Should Look Like
	Add an ‘Exit’ Button
	Save Subapplication

	6. Generate A Runtime
	Files Created By the Generate Runtime Process on the Development PC
	Libraries Objects and Members Created by the Generate Runtime Process

	7. Compile Transferred Files
	8. Ensure the Jacada Monitor is Active
	9. Run Application with a Java Client
	The Finished Product
	Close the Jacada Server

	10. Run Application with an XHTML Client
	The Finished Product
	Close the Jacada Server

	Create the Main Menu Window
	Objectives:
	1. Window Design Specifications
	2. Open the Jacada Studio for iSeries IDK
	3. Open the MYTUTOR Application
	4. Create the PMENU Subapplication
	Elements Added to the Window by the Tutorial_MenuLayout Window Layout
	Checking the Contents of the Window

	5. Add Representation to the Window
	Positioning the Menu Buttons
	Save Subapplication
	The Finished Product

	6. Generate Runtime and Transfer Files
	7. About Host Code
	8. Compile DDS and Program File on Host
	9. Ensure the Jacada Monitor is Active
	10. Run Application with a JAVA Client
	The Finished Product
	Close the Jacada Server

	11. Run Application with an XHTML Client

	How It Works: The Main Menu Window
	Look for the ActionPerformed Method Attached to the OnClick Event of the Menu Buttons
	Events
	Window Component Names

	Optional Exercises: The Main Menu Window
	1. Delete the Buttons that Were Inserted by the Tutorial_MenuOption Representation
	2. Drag a Simple Button Representation onto Window
	3. Set Button Component Name
	4. Set Button Style Properties
	5. Copy Paste Button
	Change Component Names and Image Associations

	6. Position Buttons in Center of Window
	7. Generate Runtime and Run Application

	Create the Add / Edit Resource Window
	Objectives:
	1. Window Design Specifications
	2. Create the PADDRE Subapplication
	Open the IDK and the MYTUTOR Application
	Create the PADDRE Subapplication
	Leveraging Common GUI Look Between Layouts
	Elements added to the Window by the Tutorial_MenuLayout Window Layout
	Checking the Contents of the Window

	3. The Window Header
	4. Add Fields to the Window
	Arrange the Position of the Added Representations
	Add Variable Representations to the Window

	5. The “Resource #” Representation
	6. The Add and Update Buttons
	The Add Button
	The Update Button
	Align the Buttons

	7. Error Handling
	8. Generate Runtime and Transfer Files
	9. About Host Code
	10. Compile DDS and Program File on Host
	11. Run Application
	Ensure the Jacada Monitor is Active
	Run your Application with a JAVA Client
	Navigate to the Add / Edit Resource Window
	The Finished Product
	Close the Jacada Server

	How It Works: The Add / Edit Resource Window
	The VariableMode Hidden Variable

	Create the Add / Edit Project Window
	Objectives:
	1. Window Design Specifications
	2. Create the PADDPR Subapplication
	3. The Add and Update Button
	4. Adding Fields to the Window
	Arrange the Position of the Added Representations

	5. Error Handling On The Host
	Add Variable Representations to the Window
	About Host Code Error Handling

	6. The “Project #” Representation
	7. Generate Runtime and Transfer Files
	8. Compile DDS and Program File on Host
	9. Run Application with a Java Client
	Ensure the Jacada Monitor is Active
	Run your Application with a JAVA Client
	Navigate to the Add / Edit Projects Window
	The Finished Product
	Close the Jacada Server

	10. Extend the HTML Code to Include Date Controls
	The Date Control Extension

	11. Run Application with an XHTML Client
	Navigate to the Add / Edit Projects Window
	The Finished Product
	Close the Jacada Server

	How It Works: The Add / Edit Project Window
	Error Handling On The Host
	Disabling the ‘Name’ Textbox in Edit Mode

	Create the Work with Projects Window
	Objectives:
	1. Window Design Specifications
	2. Create the PPROJ Subapplication
	The New Subapplication Wizard
	Elements added to the Window by the Tutorial_ LayoutforPPROJ Window Layout
	Checking the Contents of the Window

	3. Add the ‘Sort by’ Combobox to your Window
	4. Add a Table to your Window
	5. Add Representations to the Table
	Add a Field to the Table and Use the Show Filter to Find the Right Representation
	Add Remaining Representations to the Table
	Testing the Table’s Functionality
	Manipulation of Table Columns

	6. Create a Field in the KnowledgeBase
	7. Associate Representation with Field and Create a Short List
	Add FDTOTL to the Window
	What your Window Should Look Like

	8. Generate Runtime and Transfer Files
	Files Created By the Generate Runtime Process on the Development PC
	Libraries Objects and Members Created by the Generate Runtime Process

	9. Modify The RPG Program
	10. Compile DDS and Program File on Host
	11. Run Application with a Java Client
	Run your Application with a JAVA Client
	Navigate to the Work with Projects Window
	What your Window Should Look Like in Java
	Close the Jacada Server

	12. Run Application with an XHTML Client
	What your Window Should Look Like in HTML

	How It Works: The Work with Projects Window
	The ‘Submit’ Button
	Actions Performed on Table Records
	Table MenuOption Component in the Java Runtime
	Action Column in the XHTML Runtime
	Showing and Hiding the XHTML Action Column According to Runtime Platform

	Optional Exercises: Let’s Break it Down - PPROJ
	1. Add a Value to the ‘Sort by’ Combobox
	2. Associate Screen and Window Values
	View the Connection Between Screen and Window Values

	3. Generate a Runtime
	4. Create Fspec and Modify the RPG Program
	5. Compile Host Code and Run Application

