
Part IV - Exercises

Jacada Studio for iSeries

Information in this document is subject to change without notice and does not represent a
commitment on the part of Jacada. Jacada assumes no responsibility for any printing errors
that may appear in this document. No part of this manual may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying, recording,
or information storage and retrieval systems, for any purpose other than the purchaser's
personal use, without the prior written permission of Jacada.

Copyright 1992-2002 Jacada, Ltd. All rights reserved.

iSeries is a registered trademark of International Business Machines Corporation.

All other trademarks are the properties of their respective holders.

Jacada Studio for iSeries
October 2002

1

 Jacada Studio for iSeries

Tutorial Exercise Overview

This overview will introduce you to the main objectives of each of the exercises in this tutorial. You will then be introduced to the Jacada Studio
workflow and the development and runtime architecture models. You will be introduced to the files created by the development process and the
connection between the GUI and host development environments. This section acts as a stand-alone reference and glossary of Jacada Studio for
iSeries development terminology and exercise objectives. It is not necessary that you learn all of the information in this section by heart before
going on to do the exercises. Just remember that you can always use these pages as a reference, when you need to.

* Note : This status bar shows your position in the workflow of the tutorial exercises. It is very important that you do the exercises in this tutorial in the
order of their appearance in the status bar, in order for you to navigate through your runtime successfully.

1. TUTORIAL EXERCISE OBJECTIVES

In the beginning of each exercise, you will find a gray box with a bulleted list of exercise objectives. The following is list of the objectives for all
of the exercises in this tutorial.

IDK Walk-Through Objectives
• To introduce the reader to the Jacada Studio for iSeries Interface Development Kit (IDK)

• To familiarize the reader with the basic structure and navigation of the IDK

• To expose the reader to the fundamental components of the IDK including toolbars, palettes, and basic terminology

Your First Application Exercise Objectives
• To introduce the reader to the development process workflow

• To familiarize the reader with the mechanics of constructing and executing of a very simple Studio for iSeries graphical program

• To expose the reader to the wizard-driven design and deployment features and automated code generation capabilities of Jacada Studio

Main Menu Exercise Objectives
• To provide an exercise that replicates the menu application window in the prepackaged iTutor application

• To show one possible way to build a menu window and to explain how it works

• To introduce the reader to the power of pre-built, reusable graphical components

• To explain the relationships between client-side graphical components and host-side navigation and process logic

• Briefly examine host code to understand what was generated and what process logic must be added to complete the program

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

2JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Add/Edit Resource Exercise Objectives
• To provide an exercise that replicates the Add/Edit Resource window in the pre-packaged iTutor application

• To build a window in which new data can be Added or existing data can be retrieved and Updated

• To examine dynamic GUI display alternatives to Indicator driven Display File behaviors

- Conditional runtime display driven by client events (based on program mode of Add or Update)

- Resource # show/hide depending on mode

- Update or Add button displayed depending on mode

• Passing variable text display values from a host program

• To gain an understanding of the relationship between fields and their graphical representations

• To gain a better understanding of client-controlled application activity as an alternative to host-controlled application activity

- Data validation at the client or server instead of the host

• Using a graphical link control to launch an external URL in a separate browser frame

• Briefly examine the host code to understand what was generated and what process logic must be added to complete the program

Add/Edit Project Exercise Objectives
• To provide an exercise that replicates the Add/Edit Project window in the pre-packaged iTutor application

• To build a window in which new data can be Added or existing data can be retrieved and Updated

• To examine dynamic GUI display alternatives to Indicator driven Display File behaviors

- Conditional runtime display driven by client events (based on program mode of Add or Update)

- Project # show/hide depending on mode

- Variable Text and behavior (Update or Add) of a single Action button displayed depending on mode

- Disabling an input capable field at the client based on program mode

• Using methods to communicate the results of data validation performed at the host to the client

• Using code extensions to add advanced GUI controls in XHTML (date control)

3JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Work With Projects Exercise Objectives
• To provide an exercise that replicates the Work with Project window in the pre-packaged iTutor application

• To build a window that illustrates the graphical alternative to Subfile behavior through the use of a graphical table control

• To provide a brief explanation on how to construct and manipulate a table within the IDK

• To provide a capability to re-sequence or reload a table based on a Combobox selection of logical sort sequences

• To show the use of previously used fields with new short-list representations and the difference in use within a table control

• To expose the developer to the use of palette filters to improve usability of the IDK

• To go through the process of creating a new field and assigning an appropriate representation to that field when it is added to the display

• To add several lines of RPG code to implement one of the Jacada Studio table level APIs

• To differentiate Jacada Studio for iSeries table processing from iSeries green-screen Subfile processing

• To explain the different runtime behaviors of record selection between the Java and XHTML clients

2. THE JACADA STUDIO WORKFLOW OVERVIEW

The Jacada Studio for iSeries general workflow is as follows:

In the IDK:

On the iSeries:

In the IDK:

1. Create an Application Create an application to contain your GUI windows.

2. Build the KnowledgeBase Build the elements that will be reused throughout the application.

3. Create Subapplication Windows Create GUI windows and assign Knowledgebase templates.

4. Design Subapplication Windows Modify the look and feel of your windows for enhanced usability and design.

5. Generate Runtime Compile GUI application. Create and transfer RPG shell programs and copybooks to host.

6. Start Jacada Monitor Monitor listens for connection requests from the Jacada Server, initiates new jobs, and delegates
sessions to those jobs.

7. Write Host Code Add Program Logic to Auto-Generated shell program.

8. Compile Program and DDS PF Compile RPG host program and the DDS physical file copybook.

9. Run Application Run your application with either a Java or HTML client.

4JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
3. THE JACADA STUDIO DEVELOPMENT ARCHITECTURE

The name of the application in which you will be doing your development on the PC is MYTUTOR The name of the Library in which you will
be doing your development on the host is MYTUTORIAL. The Jacada Studio Development architecture concept is as follows:

In the IDK:
1. GUI Development

Create GUI windows

2. Generate a Runtime
The Runtime Generation process creates:
RPG shell programs, Parameter List (PLIST) copybooks, File Specification copybooks and DDS physical files.

3. The Runtime Generation process also transfers files to the iSeries and places them in the appropriate libraries / objects.

4. THE SHELL PROGRAM

The Shell Program is a template for the host program that drives a Jacada Studio window. The Shell Program provides a jump-start for the host
programmer. It is an automatically generated program that performs the mandatory API actions involved in displaying a Jacada Studio window.
This program should be used by the programmer to implement the business logic.

* Note : The generated shell program contains all you need to test run an Application. The Read/Write statements in the automatically generated shell
programs are very similar to the way you Read/Write to a display file.

MYTUTOR

Generate Runtime

Development PC

GUI Development
Create GUI windows

Compile application to create

MYTUTORIAL

iSeries

QRPGSRC
RPG programs
Parameter List copybooksCreate and transfer:

1. RPG Shell Programs
2. Parameter List copybooks
3. File Specification copybooks
4. Physical File DDSs QDDSSRC

Physical File DDSs

1

2

* Note : Files are created in:
\JacadaStudio\appls\
<Applname>\gds

File Specification copybooks

GUI clients.

DEVELOPMENT APPLICATION DEVELOPMENT LIBRARY

3

5JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Each time a Jacada Studio developer generates a Runtime for an application, a Shell Program for each window within the application is also
generated. The Shell Program, when completed, performs the same functions as a standard iSeries interactive application program. The difference
is that instead of using a display file to interact with the user’s terminal, a special file is used to interact with a graphical client that was created
with the Jacada Studio IDK. In addition, the program runs in batch mode.

Location of the Shell Program
After Runtime Generation, the Shell Program is found in the directory <Jacada Studio Root Path>\appls\<applname>\gds.

The file name is ShellProgram.RPG_OPM.<window name> or ShellProgram.RPG_ILE.<window name>, depending on the version of RPG
specified in the wizard when the application was created.

5. OTHER GENERATED FILES RELEVANT TO THE SHELL PROGRAM

There are three other files created in the runtime generation process. These files are used by the automatically generated shell program for the
following purposes:

Files related to the window

The following three files are created for every window, in addition to the Shell Program:

File Name File Type and Usage Description

RPG_xxx.<saname>$D DDS code for window Buffer definition for the window. Jacada Studio generates one such file for
each window. This file defines one record, named <WindowName>B, which
holds a list of the fields defined in the window. Gets copied to the
QDDSSRC file, and must be compiled.

RPG_xxx.<saname>$F File specification copybook for
window

Contains RPG F-specs. Defines an external, ‘special’ file. Links the window
with a special file definition and with a Parameter List (PLIST) definition.
Gets copied to the QRPGSRC file.

RPG_xxx.<saname>$P Parameter List (PLIST) copybook for
window

Parameter List (PLIST) definitions. These are RPG C-specs. Gets copied to
the QRPGSRC file.

6JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Files related to tables

If the window includes a table, three additional files are generated:

The files are generated in the directory: <Jacada Studio Root Path>\appls\<applname>\gds.

For Example:

You create an application called APPL01 to run in conjunction with RPG OPM programs. You name one of the windows SCR01. This window
includes a table, which you call TAB01. When you generate a runtime for this application, the following files are created for window SCR01:

File Name File Type and Usage Description

RPG_xxx.<saname>#D DDS code for table Buffer definition for one table row. Jacada Studio generates one such file for
each table in the window. This file defines one record, named
<TableName>B, which holds a list of the fields defined in the row. Gets
copied to the QDDSSRC file, and must be compiled.

RPG_xxx.<saname>#F File specification copybook for table Contains RPG F-specs. Defines an external, ‘special’ file. Links the table with
a special file definition and with a Parameter List (PLIST) definition. Gets
copied to the QRPGSRC file.Same as the preceding file, but is created only if
the window contains a table.

RPG_xxx.<saname>#P Parameter List (PLIST) copybook for
tableParameter list definition.

Consists of RPG C-specs. Gets copied to the QRPGSRC file.

File name Description

RPG_OPM.SCR01#D DDS statements for table TAB01

RPG_OPM.SCR01#F F-spec copybook for table TAB01

RPG_OPM.SCR01#P Parameter List copybook for table TAB01

RPG_OPM.SCR01$D DDS statements for window SCR01

RPG_OPM.SCR01$F F-spec copybook for window SCR01

RPG_OPM.SCR01$P Parameter List copybook for window SCR01

ShellProgram.RPG_OP
M.SCR01

Shell Program for the application.

7JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Installing the Shell Program
Each Shell Program and its associated copybooks must be moved to the iSeries. This is accomplished automatically by the FTP process that
occurs as part of Runtime Generation. At Runtime Generation, in the “Specify Host Information” dialog box, the wizard will ask you for the
information it needs to move the files. You will be walked-through this wizard later.

While we recommend that you let Jacada Studio’s Runtime Generation wizard copy the Shell Program and its associated files to the iSeries, you
do have the option of copying the files yourself.

To install the Shell Program:

1. Add code in the Shell Program to process the incoming data and to return the appropriate response to the terminal operator.

2. In file QDDSSRC, compile the <WindowName>$D member, and the <WindowName>#D member if the window has a table.

3. Compile the Shell Program.

Keeping Buffer Definitions in Sync
Be aware that modifying a window or table layout in Jacada Studio can change the total size of the associated window data buffer or table data
buffer. An example of this would be if you added a new field to a screen or table, or deleted or changed the length (size) of an existing field, as
shown in the Window Fields palette.

After such a change, it is important to remember to recopy the affected DDS file and Parameter List copybook to the iSeries machine, and to
recompile the DDS file and RPG program associated with the window. Otherwise there will be a discrepancy between the size and/or layout of
the buffer used by Jacada Studio compared to the size and/or layout of the buffer expected by your supporting RPG programs on the iSeries,
which may lead to unpredictable results.

The Generate Runtime wizard will take care of recopying the DDS files and Parameter List copybooks to the iSeries, but you must remember to
recompile the DDS file and the Shell Program.

8JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview

Contents of the Shell Program
This sample program is taken from the ITUTORIAL Demo application that is included in the package you downloaded from the Internet. The
code in the shaded portion of the program was added to the basic shell program by the programmer. Comments in Ariel Narrow font have been added
for your benefit. The Alpha references in the sample program are explained on page 10.

===
 * --
 * This code was generated automatically by Jacada.
 * Sub-Application: PMENU
 * Time generated: Tue May 28 15:08:01 2002
 * --
 *

 * Import the file specifications for the current window.
 F/COPY PMENU$F << This copybook was created at Runtime Generation
 * Place other file specifications imports here.
 * No other file specs needed for this program
 *
 * Import GDS E specifications
 E/COPY JRPGSRC,GDSESPECS << This copybook is installed with Jacada Studio.
 * Place your E specifications here.
 * No additional E-specs needed for this program
 *
 * Import GDS I specifications
 I/COPY JRPGSRC,GDSISPECS << This copybook is installed with Jacada Studio.
 * Place your I specifications here.
 * No other I-specs needed in this particular program
 *
 * Import the parameters list defined for the window.
 C/COPY PMENU$P << This copybook was created at Runtime Generation
 *
 *
 * --
 * Start of main loop.
 * --
 *
 * Place your code for refreshing the window’s data here.
 * There’s no “refreshing” to be done for this particular screen
 *
 *

 * This following line is added to Perform Loop until JSTACT = ‘EXIT’. This will occur when the user presses
 * the “EXIT” button.
 C JSTACT DOUEQ’EXIT’
 *
 * Display the menu screen
 *
 C WRITEPMENUB
 * Read the menu screen
 C READ PMENUB 99
 *
 * Check JSTACT to see what button the user pressed. JSTACT was filled in by the method called
 * ‘ActionPerformed’ which is associated with each of the buttons on the main menu.
 *
 C* If ‘Exit’ was not clicked...
 C JSTACT IFNE ‘EXIT’
 C*
 C* If ‘Work with Projects’ was clicked...
 C JSTACT IFEQ ‘WWP’ JSTACT was set to WWP by the method
 C CALL ‘PPROJ’ so call prog PPROJ
 C MOVEL*BLANKS JSTACT
 C ENDIF
 C*

 C* ’Work with Resources’ clicked
 C JSTACT IFEQ ‘WWR’ JSTACT was set to WWR by the method
 C CALL ‘PRESO’ so call prog PRESO
 C ENDIF
 C*

A

B

C

D

E

9JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Copybook PMENU$F is used by program PMENU
==
 F* Generated at: Sun Jun 30 12:38:59 2002
 FPMENU$D CF E SPECIAL GDSRAP
 F KPLIST PMENU
==

Copybook PMENU$P is used by program PMENU.
==
 C* Generated at: Sun Jun 30 12:38:59 2002
 C PMENU PLIST
 C PARM 1 GDSPLV COPYBOOK VERSION
 C PARM ‘W’ GDSTYP OBJECT TYPE
 C PARM ‘PMENU ‘ GDSNAM WINDOW NAME
 C PARM 152 GDSLEN BUFFER LENGTH
 C *IN PARM *IN GDSIND INDICATORS
 C PARM GDSRC RETURN CODE
 C PARM 0 GDSLC LISTS COUNT
 C PARM LN LIST NAMES ARY
 C PARM GDSEXT GDS EXT. INFO.
==

 C* ’Add Project’ clicked
 C JSTACT IFEQ ‘AP’ JSTACT was set to AP by the method
 C MOVEL’ADD’ MODE 5 set mode to ADD
 C CALL ‘PADDPR’ call pgm PADDPR, pass 3 parms
 C PARM MODE
 C PARM PRO# 50
 C PARM MENU 5
 C ENDIF
 C*
 C* ‘Add Resource’ clicked
 C JSTACT IFEQ ‘AR’
 C MOVEL’ADD’ MODE1 5
 C Z-ADD0 RES# 50
 C CALL ‘PADDRE’
 C PARM MODE1
 C PARM RES#
 C PARM MENU
 C ENDIF
 C*
 C ENDIF IFNE EXIT
 C*
 C ENDDO DOUE EXIT
 C*
 C SETON LR
 *
 * --
 * End of main loop.
 * --
 *
 C *INZSR BEGSR
 *
 * Place your initialization code here.
 * There’s no special initialization code in this menu program.
 C ENDSR
==

1
0

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
File PMENU$D defines the menu screen buffer for program PMENU.
==
 A* HEADER FOR RECORD ‘MAIN’ OF SUB APPLICATION ‘PMENU’
 A* THIS MEMBER WAS AUTOMATICALLY GENERATED BY JACADA
 A* AT Thu Jun 20 14:22:44 2002
 A* DO NOT MODIFY THIS MEMBER.
 A* (C)COPYRIGHT JACADA
 A*
 A R PMENUB
 A JSTACT 10A
 A JSTMSG 80A

==

The Following Comments Describe the Shell Program Example Above (PMENU):
1. The elements that will normally appear in every Shell program are:

 • A - Copy statement(s) for the File Spec copybook(s) for the window’s screen(s) (item “A” in the listing)

 • B - Copy statement(s) for one or two special Jacada Studio copybooks, depending on RPG language version.

 • C - For RPG OPM these are GDSESPECS and GDSISPECS (items “B” and “C” in the listing); for RPG ILE there’s just GDSCOMMON.

 • D - Copy statement(s) for the Parameter Lists associated with the window (item “D”).

 • E - A write and read (via the API) of the screen (item “E” in the listing).

2. If the screen included a table, and additional copy statement for the table’s file specification would have been inserted after item “A”.
Additional code would also have been generated in the form of basic subroutines to clear, initialize, and read user input from, the table.

3. Item “B” is a copy statement for GDSESPECS copybook. This copybook is provided with Studio and is required in all programs using the API
for RPG OPM.

4. Item “C” in the sample program is a copy statement for the GDSISPECS copybook. This copybook is provided with Studio and is required in
all programs using the API for RPG OPM.

5. The WRITE and READ statements at “E” invoke the RPG API. Note that they were automatically inserted into the shell with the name of the
screen file as defined in the “DDS” statements in file ‘RPG_xxx.<saname>$D’.

Adding your Code to the Shell Program
Remember that the Shell Program as generated by Jacada Studio is not enough to accomplish meaningful work for you. In order to do that, you
must add the business logic code to it. Of course, the code that you add will depend entirely on the specific requirements of your window.

To help you understand the sorts of additions you need to make to your Shell Programs, we’ve included two sample Shell Programs that were
modified to work with specific windows in Appendix A of the API document. Like the program listed above, the windows in Chapter 3 of the API
document are also part of the Jacada Studio evaluation. You can also find the source code for these programs and the rest of the RPG programs
associated with this Jacada Studio evaluation, in the RPG source libraries for the iSeries that were installed.

1
1

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
Controlling the Initial Contents of the Shell Program
The Shell Skeleton controls the statements that will be generated in the Shell Program of every window. Besides the required copybooks, there
may be common subroutines or comment blocks required in every program at your particular shop. Rather than enter them manually in each
application’s Shell Program, you can enter them once in the Shell Skeleton and they will be automatically included in the generated Shell
Programs.

The Shell Skeleton is called ShellSkeleton.RPG_ILE or ShellSkeleton.RPG_OPM, and is located in the
<Jacada Studio Root Path>\appls\<applname> directory.

* Note : Do not change the order of the copybooks as they appear in the original version of the Shell Skeleton.

6. THE JACADA STUDIO RUNTIME ARCHITECTURE

The following diagram shows the Jacada Studio Runtime architecture:

1
2

JACADA STUDIO FOR ISERIES
Tutorial Exercise Overview
7. WHAT YOU CAN EXPECT

The following table shows an overall picture of the files that you can expect to encounter throughout this tutorial, and their location in the
development architecture. Some of the files have been prepackaged and installed by the installation process and some you will create for yourself
in the semi-built MYTUTOR application. The GUI Information columns show files that were either prepackaged or you will create in the IDK
on your development machine. The iSeries Files columns show the files that were either prepackaged or you will be created during the runtime
generation process and transferred to the iSeries.

Columns in the GUI Information Section

Columns in the iSeries Files Section

Application Name Name of the IDK application in which this window resides or will be created.

Window Type Type of window (e.g. I/O, Table, Output).

Window Name Name of the window in the IDK.

RPG Library Name of the library in which the files associated with the window reside or will be created.

RPG Program / Shell Name of the RPG Program associated with the window (preexisting or will be created).

Records Window / Table Name of the DDS Physical File associated with the window (preexisting or will be created).

Copybook - File Specs / Table Specs Name of the File /Table Specification copybook associated with the window (preexisting or will be
created).

Copybook - Parm Lists Name of the Parameter List copybook associated with the window (preexisting or will be created).

Exercises Number of the tutorial exercise in which the window will be built.

Applicatio Window Window RPG RPG Records Copybook Copybook
Window Title Name Type Name Library Program / Window / File Specs Parm Lists Exercises

Shell Table / Table Specs

 You will create in FIRSTAPP You will create in FIRSTAPP
 [None] FirstApp Output HelloW FIRSTAPP HELLOW HELLOW$D HELLOW$F HELLOW$P 1
 Prepackaged with ITUTO R; you will create in MYTUTO R Prepackaged with ITUTO RIAL; you will create in MYTUTO RIAL
 Main Menu iTutor Menu PMENU ITUTORIAL PMENU PMENU$D PMENU$F PMENU$P 2
 Add/Edit Resource iTutor I/O PADDRE ITUTORIAL PADDRE PADDRE$D PADDRE$F PADDRE$P 3
 Add/Edit Project iTutor I/O PADDPR ITUTORIAL PADDPR PADDPR$D PADDPR$F PADDPR$P 4
 Work with Projects iTutor Table PPROJ ITUTORIAL PPROJ PPROJ$D PPROJ$F PPROJ$P 5

 PPROJ#D PPROJ#F PPROJ#P
 Prepackaged with ITUTO R & MYTUTO R Prepackaged with ITUTO RIAL & MYTUTO RIAL
 Project Assignments iTutor Table PASSI ITUTORIAL PASSI PASSI$D PASSI$F PASSI$P

 MyTutor MYTUTORIAL PASSI#D PASSI#F PASSI#P
 Display Resource Assignments iTutor Table PDRESA ITUTORIAL PDRESA PDRESA$D PDRESA$F PDRESA$P

 MyTutor MYTUTORIAL PDRESA#D PDRESA#F PDRESA#P
 Work with Resources iTutor Table PRESO ITUTORIAL PRESO PRESO$D PRESO$F PRESO$P

 MyTutor MYTUTORIAL PRESO#D PRESO#F PRESO#P
 Assign New Resource to Project iTutor Table PASRSC ITUTORIAL PASRSC PASRSC$D PASRSC$F PASRSC$P

 MyTutor MYTUTORIAL PASRSC#D PASRSC#F PASRSC#P

GUI Information iSeries Files

1

Jacada Studio for iSeries

Walk-Through of the IDK Interface

Objectives:
• To introduce the reader to the Jacada Studio for iSeries Interface Development Kit (IDK)

• To familiarize the reader with the basic structure and navigation of the IDK

• To expose the reader to the fundamental components of the IDK including toolbars, palettes, and basic terminology

In this section, you open the Jacada Studio for iSeries Interface Development Kit (IDK) for the first time and get acquainted with the IDK
interface. You open the ITUTOR demo Application and use it to identify the different features of the IDK interface. During this introduction to the
IDK interface, it is important that you not make any changes to the Application, so that it will run it properly later in the Application Walk-
through section. So, if at any point in the IDK overview you are prompted by a message box to save your Application, reply to the prompt by
clicking the No button. This section also acts as a stand-alone reference and glossary of IDK interface features and terminology. It is not necessary
that you learn each of the interface elements in this section by heart before going on to do the exercises. Just remember that you can always use
these pages as a reference, when you need to.

In this section you learn about:

1. Opening the Jacada Studio for iSeries IDK
2. Opening the ITUTOR Application
3. The Application Combobox
4. The SubApplication Combobox
5. IDK Views
6. IDK Menus
7. The Standard Toolbar
8. The KnowledgeBase
9. Apply Design Changes
10. The Design View Palettes
11. Setting Up Your Workspace
12. Control Editing and Manipulation Options

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

The PMENU Subapplication of the ITUTOR demo application
open in the IDK Interface.

2JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
1. OPENING THE JACADA STUDIO FOR ISERIES IDK
To open the IDK interface after installing the product:

From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

2. OPENING THE ITUTOR APPLICATION

To open the ITUTOR Application from within the IDK interface:

1. From the IDK File menu > choose Open > Open Application.
The Open Application Dialog is invoked.

2. In the Open Application Dialog >
Select ITUTOR from the Application Name List >
Click OK.

3. THE APPLICATION COMBOBOX

The IDK Standard toolbar now shows that the ITUTOR is the active
Application in the both the Titlebar and the Application
Combobox.

From your Windows Start menu, navigate to the Jacada Studio
for iSeries icon to bring up the IDK interface.

Choose File > Open > Open Application. Select ITUTOR from
the Application name List and click OK to open the ITUTOR
application.

1

2

Both the IDK Titlebar and the Application Combobox show that
ITUTOR is the active application

Application
name
appears in
Titlebar

Application name appears in
Application Combobox

3JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
4. THE SUBAPPLICATION COMBOBOX

Now we will open the first of the pre-built Subappplications in the
ITUTOR demo Application.

The term “Subapplication” is used to describe the contents of a GUI
Window in the Studio IDK. Each window is referred to as a
Subapplication. Subapplications consist of GUI Elements, Host
Fields and the links between them.

To open the PMENU Subapplication in the ITUTOR Application:

From the Standard Toolbar > open the Subapplication Combobox
> select the PMENU Subapplication.
The PMENU window is opened within the IDK interface. The
Subapplication combobox and IDK Titlebar show that PMENU is the
active Subapplication.

* Note : The PMENU Subapplication is the menu window, the first
window that you will see in the demo Application runtime.

The Subapplication List
The Subapplication Combobox shows a list of all of the
Subapplications that exist in the current Application.

To open an existing Subapplication:

From the Standard Toolbar >
Select the Subapplication from the Subapplication List in the
Subapplication Combobox.

or

From the Standard Toolbar >

Use the and icons to move up and down in your
Subapplication List.

* Note : When moving between subapplications, you receive a message
box prompting you to save your application. If you switch focus
between Jacada Studio and another open application when a
message box dialog is open in the Jacada Studio IDK, this
message box disappears behind the open subapplication
window.
To retrieve it, while holding down the Alt key:
1. Press the Tab key to bring up a windows dialog box showing
 all active tasks.
2. Press Tab again as many times as necessary to select the
 windows icon.
3. Release the Alt key and you will see the message box.

SubApplication name appears
in SubApplication Combobox
and IDK Titlebar

To open an existing SubApplication, In the standard toolbar >
select the desired SubApplication from the SubApplication
Combobox or use the icons to move up and down in your
SubApplication List

Move up and
down your
SubApplication
List using icons

Select the
desired
SubApplication
from the
SubApplication
List

4JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
5. IDK VIEWS

The PMENU Subapplication is opened to Design View by default.
IDK has two working views, Design View and Test View. You can
switch between these two views in the Standard Toolbar via:

The Design View Icon
or

The Test View Icon

You can also switch between the two views via the View Menu.

Design View
Design View is the IDK view in which you build and modify your
Application. Here you create and modify your GUI window and its
contents.

Test View
Test View is the IDK view in which you test the functionality of your
Subapplications virtually, without running an actual runtime. In Test
View, you can see the functionality attached to GUI elements in your
window.

For example: Clicking on one of the menu buttons in your
Subapplication will bring up a dialog that explains the functionality
associated with the menu button.

Switch between Design View and Test View via the View Menu
or the View Icons on the Standard Toolbar.

The PMENU Subapplication open in Design View of the IDK
Interface.

Clicking on one of the menu buttons in your SubApplication will
bring up a dialog that explains the functionality associated with
the menu button.

5JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
6. IDK MENUS

The Menus in the Jacada Studio for iSeries IDK are context sensitive;
they change according to the view that you are in. A Design menu is
added when you are in Design View. This menu does not appear
when you are in Test View.

7. THE STANDARD TOOLBAR

The IDK Standard Toolbar is also context sensitive, and changes
according to the view that you are in. From the Standard Toolbar you
can:

Click the icon to Access the KnowledgeBase

Click the icon to Create a New Subapplication

Click the icon to Save your Subapplication

Click the icon to Move up in your
Subapplication List

Click the icon to Move down in your
Subapplication List

Click the icon to Apply Design Changes

Click the icon to Undo your last operation

Click the icon to Redo your last operation

Click the icon to Switch to Design View

Click the icon to Switch to Test View

8. THE KNOWLEDGEBASE

The KnowledgeBase is the place where rules regarding the properties
of IDK elements are stored. If you create a definition once in the
KnowledgeBase, instances of the knowledgebase definition can be
reused throughout the Application. We refer to changes made in the
KnowledgeBase as global modifications, since they effect all
instances of the modified object across the Application. The
KnowledgeBase instances can be modified locally in Design View.
Modifications made in Design View override the properties of
KnowledgeBase definitions. Modifications made in Design View are
considered local modifications, since they only effect the one
specific instance that was modified.

Available Menu Options in Test View.

Available Menu Options in Design View.

Added Design Menu

Various Components of the IDK Standard Toolbar

Save SubApplication

Access the
KnowledgeBase

New SubApplication

Move up and down
the SubApplication list

Apply Design
Changes

Undo / Redo

Switch
between
Views

Application
Combobox

SubApplication
Combobox

6JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Accessing the KnowledgeBase
You can access the KnowledgeBase Interface:

From the File menu > KnowledgeBase...

or

By clicking the KnowledgeBase Icon in the Standard
Toolbar

The KnowledgeBase Interface
The KnowledgeBase interface consists of four panes:

Upper Left Pane Field Definitions Pane
Upper Right Pane Field Definition Properties Pane
Lower Left Pane Representation Definitions Pane
Lower Right Pane Representation Definition

Properties Pane

Field Definitions Pane
Shows the Field Definitions that reside in the KnowledgeBase.

Field Definition Properties Pane
Where Field Definition properties are defined and modified.

Representation Definitions Pane
Shows the Representation Definitions that reside in the
KnowledgeBase. You can also see the components that make up the
Representation Definition in this pane.

Representation Definition Properties Pane
Where Representation Definition properties are defined and
modified.

* Note : The Field Definition and Representation Definition explanations
will follow.

KnowledgeBase Definitions
Jacada Studio for iSeries comes with a default KnowledgeBase that
consists of various types of definitions. The same definitions exist in
the KnowledgeBase that ships with the demo version of the product,
plus other definitions that were constructed for the purpose of this
tutorial. KnowledgeBase definitions created solely for the purpose of
this tutorial have the prefix “Tutorial_”.

For example, Tutorial_Label_Combobox is one of the definitions created
just for this tutorial.

Access the KnowledgeBase Interface from the File menu and
the Standard Toolbar

The KnowledgeBase Icon

The KnowledgeBase Interface

Field
Definitions
Pane

Representation
Definitions
Pane

Field
Definition
Properties
Pane

Representation
Definition
Properties Pane

An Example of Tutorial_MenuOptions - a Representation
Definition defined in the KnowledgeBase. In this example you
see the four buttons attached to this Representation Definition
and the properties associated with one of the buttons.

7JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
* Note : The properties of default knowledgebase definitions can be
modified to fit your company’s specific standards

Representation Definitions
A definition in the KnowledgeBase can be constructed of one or
multiple GUI controls. Together, these definitions make up the
“Representation Definition” - or the “rule” stored in the
KnowledgeBase, which describes controls and the properties
assigned to them.

For example: The four buttons in the menu screen were created in
Design View and saved to the KnowledgeBase as a group. This
group, and the properties assigned to it (attached images,
functionality and style) were all saved to the KnowledgeBase as a
‘Representation” named Tutorial_MenuOptions. This method of
definition allows you to create complex GUI controls, made up of
multiple definitions, and save them for reuse across several
Subapplications.

Field Definitions
The buffer fields that carry data to and from the host Application, and
the properties assigned to them, make up the “Field Definition” - or
the “rule” stored in the KnowledgeBase, which describes the fields
and their properties. A Field Definition can be attached to one or
more Representation Definitions in the KnowledgeBase for use
within the Application. You can import your field standards from
your databases into the KnowledgeBase. This feature is not covered
in this tutorial, yet it is an important feature which substantially
expedites KnowledgeBase creation.

Methods
Methods are short scripts that allow you to enhance an application's
functionality. Methods can be used to control and manage behavior at
both the client and the host, and often act as conduit for
communicating certain client activities to the host or vice versa.
Methods can also be used to implement basic presentation logic such
as client-side validations or the conditional display of controls or
text. Jacada Studio for iSeries comes with many predefined methods
that take care of the more general aspects of data flow and interaction
between the host application and its graphical clients. Jacada Studio
also provides you with the tools necessary to write new methods and
modify existing methods. Methods can be highly specific, or quite
generalized allowing a high degree of reuse. The degree of
interaction that you can implement with the proper use of methods
allows you to achieve a level of application sophistication that far
surpasses that of applications limited by green-screen presentation.

An Example of FDEDAT - a Field Definition defined in the
KnowledgeBase. In this example you see the properties
associated with this field in the KnowledgeBase.

8JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Window Layouts
Window Layouts can be thought of as display templates that enable
developers to design and implement consistent looks and feels within
an application. An application will likely have several Window
Layouts that define different window styles. Single record windows
may have their own look and feel, while windows with tables have
another. Although a single application may implement different
Layouts for different window styles, Layouts can share common
properties such as background graphics, company logos, and an Exit
button. Because Window Layouts are defined and stored in the
Knowledgebase as global components, sweeping change to the look
and feel of an entire application can be made by altering a Layout and
applying that change to all subapplications built using that Layout.

9. APPLY DESIGN CHANGES

If you make a change in Design View, it is recommended to apply
your changes by pressing the Apply Design Changes button in
the Standard Toolbar.

10. THE DESIGN VIEW PALETTES

When working in Design View, there are four palettes at your
disposal. The image to the right illustrates the default placement of
the four Design View palettes, when a Subapplication is opened. The
palettes are floating and can be dragged by their title bars to any
location in the screen.

Usage of Design View Palettes

Control Editing Palette Manipulate / edit controls
Definitions Palette Shows KnowledgeBase fields

and representations
Window Fields Palette Lists fields in the open

subapplication
Window Components Lists representations in the open
Palette subapplication

Use the Apply Design Changes button to Apply your changes

Window
Components Palette

Default placement of the Design View palettes

Window
Fields
Palette

Definitions
PaletteControl

Editing
Palette

9JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Viewing the Design View Palettes
You can toggle the Design View palettes on and off via the Standard
Toolbar by:

Toggle the Control
Editing Palette by clicking the icon

Toggle the Definitions
Palette by clicking the icon

Toggle the Window
Components Palette by clicking the icon

Toggle the Window
Fields Palette by clicking the icon

Bring Palettes to Front
If any of the palettes become obscured by a window, click the F12
key on your keyboard to bring them to the front.

You can also right-click (with your mouse pointer over the title bar,
click the right button on your mouse) the title bar of the control
editing palette, and choose Always on Top if you want the palette to
always appear on top of the active window.

The Control Editing Palette
When a control is selected in Design View:

1. Right click the control (with your mouse pointer over the control,
click the right button on your mouse) to receive a Right Mouse
Button menu with the object’s editing and manipulation options.

2. Access the object’s editing and manipulation options via the
Control Editing Palette.

* Note : Control editing and manipulation options are discussed in the
next step.

Icons Added to the IDK Standard Toolbar in Design View.
These icons can be used to toggle the Design View Palettes
palettes on and off.

Window Fields
Palette

Window Components Palette

Definitions Palette

Control Editing Palette

Right click the control editing Palette Title bar and choose >
Always on Top if you want the palette to always appear on top
of the active window.

When an object is selected in Design View, access the control
editing / manipulation options via the right mouse button menu
or the Control Editing Palette.

1

2

RMB

1
0

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
The Definitions Palette
The Definitions Palette allows you to view the names of Fields and
Representations that are defined in the KnowledgeBase. From this
palette, you can add instances of the Fields and Representations that
exist in the KnowledgeBase to your Subapplication, by dragging
them onto your window. There are two views in the Definitions
Palette: Representation Definitions View and Field Definitions View.

Representation Definitions View Button
Click the Representation Definition View button in the Definitions
Palette to see the list of Representation Definitions defined in the
KnowledgeBase. Representation Definitions created solely for the
purpose of this tutorial have the naming convention Tutorial_xxx,
with the prefix “Tutorial”.

* Note : Use the filter at the top of the Definitions Palette to sort the
definitions in the palette by type. The filter options can be
customized within the IDK.

Field Definitions View Button
Click the Field Definition View button in the Definitions Palette to
see the list of Field Definitions defined in the KnowledgeBase.

See the list of Representation Definitions defined in the
KnowledgeBase by clicking the Representation Definitions
View button in the Definitions Palette

Representations
created for the
purpose of this tutorial
have the prefix
“Tutorial”

Representations that
ship with the default
Jacada Studio
KnowledgeBase

The Representation
Definitions View
Button

Type Filter

See the list of Field Definitions defined in the KnowledgeBase
by clicking the Field Definitions View button in the Definitions
Palette

The Field Definitions
View Button

1
1

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
The Window Components Palette
A list of the components that reside in your Subapplication. When
components are added to the window via the Definitions Palette, they
automatically receive a name that appears in the list of components in
the Window Components Palette. Modify Control properties via the
control editing section of the Window Components Palette.

* Note : Remember: Please do not modify the ITUTOR application.

The Window Fields Palette
A list of the fields that reside in your Subapplication. Notice the
difference in icons for local fields in the list and global fields in the
list, defined in the KnowledgeBase. At the top of this dialog there are
two buttons. You can create local fields and import global fields via
these buttons.

Create New Local Field
Use this button to create a new local field in the Subapplication. You
can define a field’s properties via the control editing section of the
Window Fields Palette. You can only use a local field in the
Subapplication in which it was created.

Add Field From KnowledgeBase
Add an instance of a field defined in the KnowledgeBase. Pressing
this button brings up the Import Fields Dialog from which you
choose the fields that you wish to use. You cannot modify the
properties of fields imported from the KnowledgeBase.

See a list of the components that reside in your Subapplication
in the Window Components Palette. Modify Control properties
via the control editing section.

List of Window
Components

Control Editing
Section

See a list of the fields that reside in your Subapplication in the
Window Fields Palette. Modify the properties of locally defined
fields via the control editing section.

Global Fields
imported from
KnowledgeBase

Control
Editing
Section

Local Field

1
2

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Using Palettes to View The Relationship Between
Window Components and Window Fields
When you select a component in the window, the component’s name
is automatically selected in the Window Components Palette. If there
is a field attached to the component, the field name is also selected in
the Window Fields Palette.

The converse is also true: if you select a component in the Window
Components Palette, it is automatically selected in the window. The
attached field (if any), is selected in the Window Fields Palette.

This selection system also works when fields are selected in the
Window Fields Palette.

11. SETTING UP YOUR WORKSPACE

The grid tool provides a visual guide for aligning controls on the GUI
in Design View. The Snap to Grid option is useful in regularizing the
placement of controls on the GUI.

Configuring the Grid
To configure the grid:

1. From the Options menu select Window Options. The Window
Options dialog box opens.

2. Select the Grid Attributes tab:

3. In this dialog you can set the following options:

Grid Style The grid markings can be either lines or
dots.The default is dots.

Snap to Grid When enabled the upper left corner of
the control snaps to the nearest crossing
of horizontal vertical grid lines. When a
group of controls is selected, the upper
left corner of the imaginary rectangle
that encompasses the group snaps to
the grid line crossing.

Show Grid When enabled the window is displayed
with a grid.
When disabled the grid is not displayed

Horizontal Grid Size Set the horizontal distance, in dialog
units, between the grid lines.

Vertical Grid Size Set the vertical distance, in dialog
units, between the grid lines.

When you select a component in the window, the component’s
name is selected in the Window Components Palette. If there
is a field attached to the component, the field name is also
selected in the Window Fields Palette.

Configure the Grid by selecting the Options menu > Window
Options and configuring the parameters in the Grid Attributes
tab.

1

2

3

1
3

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Toggling the Grid on and Off
You can toggle the grid on and off by:

Going to the View Menu > select Customize > Show Grid

12. CONTROL EDITING AND MANIPULATION OPTIONS

This step will introduce you to the following subjects:

• Modifying Component Properties

• Selecting Controls in the GUI

• Control Editing and Manipulation Options

Modifying Component Properties
Modifying component properties is done through the Component
Properties Dialog in Design View. The Component Properties dialog
automatically displays the properties of the component that it was
accessed from. For example, when accessed by clicking on an edit
component, the edit component’s properties will appear, when
accessed by clicking on a button component, the button component’s
properties appear.

To access the Component Properties Dialog:

In the Window Components Palette, double click the compo-
nent’s name or right click the component’s name and choose
Modify from the floating menu.
or
Double click the control on the window (for menu items, open
the menu and double click the item).

Deleting Components

To delete a component:

1. In the Window Components Palette, select the component you
wish to delete.

2. Press the Delete key
or
Click with the right-mouse button. In the floating menu, choose
Delete.

3. In the messagebox that opens, click Yes.

* Note : A control can be also deleted by selecting it in the window and
pressing the Delete key.

Toggle the grid on and off via the View menu > Customize >
Show Grid option.

Access a component’s properties dialog by double clicking the
component’s name in the Window Components Palette, and
choosing Modify from the floating menu.

The style properties of a button component in the button
component’s properties dialog.

To delete a control, select it either in the window, or in the
Window Components Palette and press the delete key on your
keyboard. In the messagebox that opens, click Yes.

1

23

1
4

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Renaming Components

To rename a component:

1. In the Window Components box, select the component you wish
to rename.

2. Press the F2 key
or
Click with the right-mouse button. In the floating menu that opens,
choose Rename.

3. The component name becomes editable. Type in the new name.

Selecting Controls in the GUI
In Design View, controls can be selected in several ways:

Leading Control

All selected controls are surrounded by sizing handles. The Leading
control is the control whose sizing handles are emphasized when a
group of controls are selected. The control editing options use a
leading control to establish the standard by which the other controls
are manipulated. For example, when a group of controls are resized
they assume the size of the leading control. In the illustration to the
right, the “Project #” label is the leading control.

Selecting Controls Individually

Select a control by clicking on it. When a control is selected it
receives sizing handles.

• To select more than one control press SHIFT + Click each control
to be selected.

• To add controls to a selection press SHIFT + Click on the
additional controls.

• To remove one control from a selection, use SHIFT + Click on the
control to remove.

• Clicking a selected control designates the clicked control as the
leader control.

• Clicking the window's client area clears all selected controls.

Individually A single control can be selected.
Additional controls can be added
individually to the selection.

In Groups All the controls can be selected or
A group of controls of a certain type
can be selected.

To rename a component, select it in the Window Components
Palette and choosing Rename from the floating menu.

1

2

Click a selected control to designate it as the leading control.

1
5

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Selecting Controls by Group

To select a group of controls on a Window:

1. Click on the window client area while holding down the left mouse
button and drag the cursor across the window to mark a
rectangular around the controls to be selected. The controls that
are inside of the rectangle or touching the rectangle are selected.

2. Use the Select options in the Design pull-down menu to select all
controls of a specific type.

The Select Options in the Design Menu

Selecting one of the Select options in the Design Menu changes the
cursor to a cross-hair. Drag this cursor across the Window to mark a
rectangular area on the screen. The controls that are inside of the
rectangle or touching the rectangle are selected.

The following options are available for selecting controls:

Run Selection Definition An advanced topic that will not be
introduced in this tutorial.

Many Selects all the controls within the
rectangle. When selected, the mouse
cursor becomes a crosshair. While
holding down the left mouse button and
dragging the mouse across the window,
the “Many” option selects all of the
controls in the rectangle.

All Selects all the controls.

Check Box Selects all the Check Boxes within the
rectangle.

Combo Box Selects all the Combo Boxes within the
rectangle.

Group Box Selects all the Group Boxes within the
rectangle.

Static Selects all the Static controls within the
rectangle.

Textbox Selects all the Adjustable Edits within
the rectangle.

Button Selects all the Buttons within the
rectangle.

Link Selects all the Links within the
rectangle.

Click on the Window client area and drag the cursor around the
controls to be selected.

1

Use the Textbox Select options in the Design pull-down menu
to select all controls of a textbox type.

2

Only textbox controls are selected.

2

1
6

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Clearing Selected Controls
To clear selected controls in the window client area:

• Click the window's client area to clear all selected controls.

• Press the Shift key while dragging the cursor to add controls to
those already selected in the Window.

• Press the Shift key and click an already selected control.

Control Editing and Manipulation Options
The Control Editing and Manipulation options are the heavy-duty
functions that you can use to design the placement of the controls on
your window. To access these options select Arrange from the
Design menu.

Calling up the Arrange Menu with the Right Mouse Button

The Arrange options can be called up by pressing your right mouse
button. This is a useful shortcut for calling up the Arrange cascading
menu when a control is selected. To call up the Arrange menu:

1. Select a control or group of controls.

2. Click the right mouse button. The RMB menu will be displayed
where you have clicked on the window.

The following are the Control Editing and Manipulation options:

Run Function Definition An advanced topic that will not be
introduced in this tutorial.

Align Left Aligns the selected controls to the left
according to the left edge of the leading
control.

Align Right Aligns the selected controls to the right
according to the right edge of the
leading control.

Align Top Aligns the selected controls according
to the top edge of the leading control.

Align Bottom Aligns the selected controls to the
bottom edge of the leading control.

Horizontal Center Places each of the selected controls in
the horizontal center of the suggested
Window's client area. To center several
controls that are located on the same
horizontal line, use the Horizontal
Group Center option.

Access the control editing and manipulation options via the
Arrange option in the Design menu.

Access the control editing and manipulation options right
mouse button menu.

1

2

1
7

JACADA STUDIO FOR ISERIES
Walk-Through of the IDK Interface
Control Manipulation via Keyboard Arrows

Use the keyboard arrow keys to move selected controls by single
units, or according to the grid lines when the grid is displayed.

Horizontal Group Center Places the selected controls (as a
group) in the horizontal center of the
suggested Window's client area.

Vertical Equal Spacing Spaces the selected controls at equal
vertical distances.

Horizontal Equal
Spacing

Spaces the selected controls at equal
horizontal distances.

Equal Width Resizes the selected controls to an
equal width, according to the width of
the leading control.

Equal Height Resizes the selected controls to an
equal height, according to the height of
the leading control.

Equal Size Resizes the selected controls to an
equal size, according to the size of the
leading control.

Adjust Size by Text Resizes the selected controls according
to the length of the text.

Set Font and Color Change the font and/or color of the
selected control(s)

Advanced Editing Additional editing features not covered
in this tutorial.

Send to Back When the selected control is covering
other controls in the IDK, makes the
next control visible. Does not affect the
runtime.

Cut Removes the selected control from the
GUI and places it on the internal
clipboard.

Copy Copies the selected control and places
it on the internal clipboard.

Paste Adds the internal clipboard’s contents
to the GUI.

1

Exercise 1 - Jacada Studio for iSeries

Your First Application

Objectives:
• To introduce the reader to the development process workflow

• To familiarize the reader with the mechanics of constructing and executing of a very simple Studio for iSeries graphical program

• To expose the reader to the wizard-driven design and deployment features and automated code generation capabilities of Jacada Studio

In this exercise you learn about the underlying structure that is common to all Jacada Studio for iSeries Applications. The topics in this chapter lay
the groundwork of understanding which you need before you can modify the look and feel of your new GUI Application. In this chapter, you
learn how to build a brand new Application, using the default Jacada Studio Knowledgebase which ships with the full version of the product. The
purpose of this exercise is to let you to experience the entire Jacada Studio workflow with the full default Knowledgebase. In following chapters,
you will use the predefined KnowledgeBase created especially for the ITUTOR Application provided for the evaluation version of the product.
For now, let’s see exactly what you can do with a bit of imagination, and the default Jacada Studio for iSeries environment.

The major steps to this exercise are:

1. Window Design Specifications
2. Open the Jacada Studio for iSeries IDK
3. Create an Application
4. Create a Subapplication
5. Add GUI Components to the Window
6. Generate A Runtime
7. Compile Transferred Files
8. Ensure the Jacada Monitor is Active
9. Run Application with a Java Client
10. Run Application with an XHTML Client

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

The final product of your efforts in this exercise.

2EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
1. WINDOW DESIGN SPECIFICATIONS

The design specification for this window is to create a GUI window
with the text “Hello World”, add a button to Exit the application and
run a built Application in both the Java and XHTML runtime clients.

2. OPEN THE JACADA STUDIO FOR ISERIES IDK
If you are not already in the Jacada Studio development environment,
open the IDK interface. To open the Jacada Studio for iSeries IDK:

1. From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

3. CREATE AN APPLICATION

Applications in the IDK are created via the New Application Wizard.
An IDK Application consists of all Client and Server elements, as
well as information which is used to write the Host code.

1. From the File menu > choose New > New Application...

2. In the New Application Wizard, specify the following
Application properties:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

3. Click Finish to come out of the New Application Wizard.

* Note : Upon exiting the New Application Wizard, you are prompted to
start the New Subapplication Wizard, the next logical step in the
workflow. If you choose ‘Yes’, skip step number 1 in the next
section.

Application Name: FIRSTAPP

Language: English USA

Host Programming
Environment:

RPG_OPM

Resolution: SVGA (800x600)

From your Windows Start menu, navigate to the Jacada Studio
for iSeries icon to bring up the IDK interface.

1

Create a New Application.

Set Application properties via the New Application Wizard.

2

Upon exiting the New Application Wizard, you are prompted to
start the New Subapplication Wizard, if you choose ‘Yes’, skip
step number 1 in the next section

1

3EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
4. CREATE A SUBAPPLICATION

The term “Subapplication” is used to describe the contents of an IDK
GUI Window. Each window is referred to as a Subapplication.
Subapplications consist of GUI Elements, Host Fields and the links
between them. In this step, you will create your first Jacada Studio
Subapplication with the BasicLayout Window Layout.

To create a new SubApplication:

1. From the Subapplication Menu > New...
or
Click the Subapplication Icon on the Standard Toolbar

2. In the New Subapplication Wizard, Specify the following
Subapplication properties:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

* Note : The Window Layout feature will be explained in detail in the
next exercise.

3. Click Finish to come out of the New Subapplication Wizard.

5. ADD GUI COMPONENTS TO THE WINDOW

In the IDK, GUI Components are referred to as ‘Representations’,
because they are the visual presentation of information that would
have been found in the host screen display. In this segment, we use
the Definitions Palette to add Representations and Fields stored in
the KnowledgeBase to our Subapplication. We will then use the
Window Fields Palette to View and Edit the Field properties and the
Window Components Palettes to View and Edit the Representation
properties.

Subapplication Name: HELLOW

Popup Window: Unchecked

Window Layout: BasicLayout

Subapplication
Description:

None

New
Subapplication
Icon on Standard
Toolbar

Three ways to access the New Subapplication Wizard.

1

Specify subapplication properties in the New Subapplication
Wizard. Choose <none> from the Window layout list in the
Window Layout step of the New Subapplication Wizard.

2

Click Finish to come out of the New Subapplication Wizard.

3

4EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
Add a GUI Component and Edit Control Properties
1. From the Definitions Palette, select the Label representation, and

drag it onto your Subapplication.

2. Notice that when a Representation in the window is selected, it is
subsequently selected in the Window Components Palette.

3. In the Control Editing Section of the Window Components
Palette, change the following control properties, in the following
order:

* Note : After you change any control properties, you must press
ENTER for the change to take effect.

4. From the Standard Toolbar, click the Apply Design Changes
button.

* Note : Use the Apply Design Changes button to apply your changes to
the window.

What your Window Should Look Like
This is what your window should look like at the end of the last step.

Text: Hello World !!!

Static Styles >
Use Separator: No

Font and Color >
Font >
Size: 22

Location >
 X:
 Y:

280
180

Size >
 Width:
 Height:

200
30

Click and Drag Representations onto your window.
Representations selected in the Window, are also selected in
the Window Components Palette.

Control Editing Section

1

2

3

Use the Apply Design Changes button to Apply certain
changes to your design that do not update automatically.

4

What your window should look like at the end of the last step

5EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
Add an ‘Exit’ Button
In order to gracefully terminate your runtime session, add an ‘Exit’
button to your Subapplication. To add the ‘Exit’ button:

1. From the Definitions Palette, select the ExitButton
representation, and drag it onto your Subapplication.

2. Manually place the ‘Exit’ button under the ‘Hello World’
representation.

Save Subapplication
Before Generating a Runtime, you should save your Subapplication.
To save your Subapplication:

From the Standard toolbar choose the icon.

6. GENERATE A RUNTIME

The individual Subapplications are analogous to source code. You
compile the Subapplications into an executable in a process called
Generating the Runtime. In the IDK, Generate Runtime is a wizard
driven process. To generate a Runtime:

1. From the File menu > choose Generate Runtime...
The Generate Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

* Note : Notice that each of the following parameters are on different
steps of the wizard.

Runtime Type: Java and XHTML

Jacada Server Platform: Windows NT(2000) x86

Select the ExitButton representation, and drag it onto your
Subapplication.Manually place the ‘Exit’ button under the ‘Hello
World’ representation.

1
2

Save Subapplication

Use the Save button on your standard toolbar to Save your
Subapplication.

Generate a Runtime to compile your Subapplication.

1

Choose both Java and XHTML runtime types.

3

2

6EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
3. In the File Transfer screen, specify the following information,
then click Next:

* Note : When checked, the “Transfer files” feature automatically
transfers the files created by the Generate Runtime process to
the appropriate Libraries / Objects on the host. If you don’t
check this checkbox, no connection to the host will be made and
no files will be transferred.

* Note : Specify a target library for your Application files. If a library by
the name you specify does not exist, one will be created for you.

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

* Note : By default, the Jacada Monitor is set to listen on port 7666. If
this port is in use by another Application, is recommended that
you (a) bring down the service that is currently occupying port
7666 for the duration of this tutorial, or (b) type CFGJACMON
into your iSeries command line and press Enter. This invokes
the Configure Jacada Monitor utility. Use the Change function
to change the port that the Jacada Monitor listens on.

Default and Custom Host Application Buttons
The settings in the Host Application section change according to
whether you choose the Default or Custom radio button.

In this example, the Default settings are used. The Default settings
allow you to use the pre-configured CLWrapper that was created for
the purpose of this tutorial. The CLWrapper can be customized to
provide additional advanced capabilities (i.e. program calls) and the
Custom settings can then be used to invoke your customized
settings. For the duration of this tutorial, you will use the basic
CLWrapper by selecting the Default option.

Transfer files: <Checked>

Host: <YourHostIPAddress>

Login User: <YourLoginUserNameOnHost>

Login Password: <YourLoginPasswordOnHost>

Target Library: FIRSTAPP

Host: <YourHostIPAddress>

Port Number: 7666

Fill out the File Transfer screen of the Generate Runtime
Wizard

3

Fill out the Host Connection and Application Information
screen of the Generate Runtime Wizard

4

7EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application

* Note : This is the first program that is called during runtime.

* Note : Specify the library list that will be set for the host session.
Include your Application Library and the JACADA library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process.
The Generating the Runtime dialog appears.

* Note : In this dialog, you can view the output regarding the status of the
Runtime Generation process. There is crucial information output
to this dialog, go over the output to see which files were
transferred to the host. Look for the message “Runtime was
successfully generated” at the end of the compilation process,
this is an indication that all is well and you can safely go on to
the next step.

6. Click Close to come out of the Generating the Runtime dialog.

Files Created By the Generate Runtime Process on
the Development PC
Look in the JacadaStudio\appls\<ApplName>\gds directory - 4
files were created on the development PC:

1. RPG_OPM.HELLOW$D - The DDS Physical File - Describes
the data structure of the records in the Subapplication. This file is
used as a source for Jacada’s Service Program. The structure of the
Jacada DDS File is based on the structure of Physical File DDSs
(PF) and does not contain the information found in Display File
DDSs (DSPFs).

2. RPG_OPM.HELLOW$P - The Parameter List Copybook -
Contains a parameter list containing control fields that are passed
by the Jacada Studio API from the end program to Jacada’s
Service Program.

Initial Program: HELLOW

Library List: FIRSTAPP JACADA

In the Library List setting, you specify the library list that will be
set for the host session. Always include your Application
library and the JACADA library.

The Generating the Runtime Dialog shows the status of a
Runtime Generation

6

The files created on the development PC as a result of the
Runtime Generation Process

1
2

3

8EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
3. RPG_OPM.HELLOW$F - The File Specification Copybook -
This file declares each window / table as a special file. It links the
window / table DDS and the parameter list from the Parameter List
Copybook to the Jacada Service Program.

* Note : The dollar sign ($) is used in the name of the files generated for
window definitions. It will be replaced by a pound sign (#) for
files generated for table definitions.

4. ShellProgram.RPG_OPM.HELLOW - The Shell Program. An
automatically generated program that performs the mandatory
actions involved in displaying a Jacada Studio Subapplication.
This program should be added to by the programmer to implement
the business logic. For testing purposes, the window can be run
without any change whatsoever to the automatically generated
shell program.

* Note : Automatically generated shell program contains all you need to
test run an Application. The Read/Write statement in the
automatically generated shell program is very similar to the way
you Read/Write to a display file.

These are text files that can be opened with any text editor. Feel free
to open these files and have a look at their structure. IMPORTANT! -
do not change the content of these files.

Libraries Objects and Members Created by the
Generate Runtime Process
The first time that you choose to transfer the files created by the
Runtime Generation process to the host by checking the Transfer files
checkbox in the Transfer Files screen of the Generate Runtime
Wizard, the library structure in the diagram to the right is created on
the host in the Target Library that you specified. After the first time
that you choose to transfer files via the Generate Runtime Wizard,
each time that you Generate a Runtime, only the DDS physical file is
transferred.

7. COMPILE TRANSFERRED FILES

Of the four files transferred to the host, only the DDS physical file
and the Program file ever need to be compiled. The File Specification
copybook and the Parameter List copybook are not compiled.
Furthermore, unless there is a change to the fields in the Subapplication,
there is no need to recompile the DDS physical file and the program file
on the host.

Compile the DDS Physical File, HELLOW$D file and the RPG
Shell Program., HELLOW.

* Note : Make sure the target library is in your library list.

Automatically generated shell program contains all you need
to test run an Application.

4

The libraries, objects and members created the first time that
you transfer files to the host.

9EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
8. ENSURE THE JACADA MONITOR IS ACTIVE

To ensure that the Jacada Monitor is active:

1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

9. RUN APPLICATION WITH A JAVA CLIENT

In order to test the runtime of your new GUI Application, you can run
the executable created during the Runtime Generation process from
within the development environment. You actually created two
clients during the Runtime Generation process: The Java client and
the XHTML client. We will run the Java client now through the IDK
wizard driven feature.

Running the Application is a wizard driven process and can be
achieved by:

1. From the File menu > choose Run Application...

2. In the Run Application Wizard, click Next to accept the
following default settings:

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and Your Default Browser window is opened to
the Jacada <ApplName>.html page.

* Note : If the server is still loading, you will receive a message box.
Answer “Yes” to wait for the server to load.

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/FIRSTAPP.html

In the Configure Jacada Monitors screen, make sure that the
word ‘Active’ Appears in the Status column to the right of the
Jacada Monitor

2

Run your Application through the development environment by
choosing File > Run Application

1

Choose Java as your runtime type in the Run Application
Wizard

2

1
0

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your Java client Application.

The Finished Product
This is what your window should look like in a Java runtime.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by clicking the
‘Exit’ button in your runtime window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

Supply your iSeries username and password to invoke the
Application via the Jacada <ApplName>.html page

4
5

What your window should look like in a Java runtime

Type ‘quit’ in the Jacada Server command window or press
Ctrl+C to close the Jacada Server

2

1
1

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
10. RUN APPLICATION WITH AN XHTML CLIENT

Now, let’s run the XHTML client. XHTML is a reformulation of
HTML in XML. XHTML stands for Extensible Hypertext Markup
Language. For all practical purposes, XHTML is just like HTML.
When we run an XHTML runtime, we receive an HTML client.

To run an HTML client:

1. From the File menu > choose Run Application...

2. In the Run Application Wizard, specify the following settings:

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and your Default Browser window is opened to
the Jacada <ApplName>.html sign-on window.

4. Type your iSeries Username and Password into the appropriate
fields in the Jacada <Applname>.html sign-on window.

5. In the sign-on window, click the OK button to run your HTML
client Application.

Runtime Type: XHTML

Port Number: 8080

Application URL: http://localhost:8080/FIRSTAPP-
xhtml.html

Run your Application through the development environment by
choosing File > Run Application

1

Choose XHTML as your runtime type in the Run Application
Wizard

2

Click Next to accept 8080 as the default port number for your
XHTML Runtime

2

1
2

EXERCISE 1 - JACADA STUDIO FOR ISERIES
Your First Application
The Finished Product
This is what your window should look like at the end of the last step.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by clicking the
‘Exit’ button in your runtime window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

What your window should look like in an XHTML runtime

Type ‘quit’ in the Jacada Server command window or press
Ctrl+C to close the Jacada Server

2

1

Exercise 2 - Jacada Studio for iSeries

Create the Main Menu Window

Objectives:
• To provide an exercise that replicates the menu application window in the prepackaged iTutor application

• To show one possible way to build a menu window and to explain how it works

• To introduce the reader to the power of pre-built, reusable graphical components

• To explain the relationships between client-side graphical components and host-side navigation and process logic

• Briefly examine host code to understand what was generated and what process logic must be added to complete the program

In this exercise, you create the first Subapplication in the ITUTOR demo Application. You create this Subapplication in the IDK MYTUTOR
Application, prepackaged for you. This Application already contains four of the eight Subapplications in the ITUTOR Application. The other four
Applications you will build yourself, with a little help from this tutorial. This Application has a predefined KnowledgeBase, created especially for
this tutorial. The purpose of this exercise is to allow you to experience how easily and speedily a window can be constructed and deployed with a
predefined KnowledgeBase. After the window is built and deployed, feel free to go on to the next exercise. If you’re up for an extra challenge, go
on to the optional exercises at the end of the exercise, and build the KnowledgeBase components used in this window for yourself.

The major steps to this exercise are:

1. Window Design Specifications
2. Open the Jacada Studio for iSeries IDK
3. Open the MYTUTOR Application
4. Create the PMENU Subapplication
5. Add Representation to the Window
6. Generate Runtime and Transfer Files
7. About Host Code
8. Compile DDS and Program File on Host
9. Ensure the Jacada Monitor is Active
10. Run Application with a JAVA Client
11. Run Application with an XHTML Client

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

The final product of your efforts in this exercise.

2EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
1. WINDOW DESIGN SPECIFICATIONS

The design specification for this window is that it include four
buttons that provide access to four other windows in the
Subapplication. A predesigned Window Layout will be associated
with the window. This Window Layout will provide the standard look
and feel of the window as well as an “Exit Application” button, that
will end the host session when pressed.

* Note : The Window Layout will bring the GUI elements that are used in
multiple Subapplications into the window. It will impose a GUI
standard by provide a standardized look and feel and it will
allow for the reuse of GUI elements.

2. OPEN THE JACADA STUDIO FOR ISERIES IDK
If you are not presently in the IDK, open the IDK by:

1. From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries.
The Jacada Studio Interface Development Kit (IDK) is invoked.

3. OPEN THE MYTUTOR APPLICATION

In order to open the MYTUTOR Application from within the IDK
interface:

1. From the IDK File menu > choose Open > Open Application.
The Open Application Dialog is invoked.

2. In the Open Application Dialog >
Select MYTUTOR from the Application Name List > Click OK.

4. CREATE THE PMENU SUBAPPLICATION
In this next step, you create the PMENU Subapplication in the
MYTUTOR semi-built Application. Make sure that the Application
combobox shows that you are in the MYTUTOR Application before
proceeding. In this exercise, you apply a prebuilt Window Layout
called Tutorial_MenuLayout to your Subapplication. We will discuss
Window Layouts later in this step.

Choose File > Open > Open Application. Select MYTUTOR
from the Application name List and click OK to open the
MYTUTOR Application.

1

2

Make sure that the Application combobox shows that you are
in the MYTUTOR application.

3EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
To create a new Subapplication:

1. From the Subapplication Menu > New...
The New Subapplication Wizard is invoked.

2. In the New Subapplication Wizard, specify the following
Subapplication properties:

3. Click Finish to exit the New Subapplication Wizard.

Elements Added to the Window by the
Tutorial_MenuLayout Window Layout
Did you notice the various elements that were brought into your
Subapplication when you selected the Tutorial_MenuLayout Window
Layout in the New Subapplication Wizard?

* Note : Keep in mind, the Jacada Studio IDK provides you with the abil-
ity to pre-define the Window Layout template for your own GUI
look and feel.

Checking the Contents of the Window
Check the contents of the Window Components Palette to see the
GUI components brought in by the Window Layout.

Check the contents of the Window Fields Palette to see the Window
Fields brought in by the Window Layout.

Subapplication Name: PMENU

Popup Window: Unchecked

Window Layout: Tutorial_MenuLayout

Subapplication
Description: <none>

In the Select Window Layout step of the New Subapplication
Wizard, choose the MenuLayout Window Layout.

2

Elements added to the window by the Tutorial_MenuLayout
Window Layout

Button with Picture and Method Attached

Images

FrameImage with Text

Check which Fields and GUI components were added to the
window by the Tutorial_MenuLayout Window Layout

4EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
5. ADD REPRESENTATION TO THE WINDOW

Representations can consist of one window component, or complex,
consisting of multiple window components grouped into one. In this
exercise, we drag the representation Tutorial_MenuOptions onto
our window from the Definitions Palette. This representation is an
example of a complex representation. It consists of four buttons
whose properties were predefined for this demo. When you are done
dragging the Tutorial_MenuOptions representation onto your
window, and positioning the buttons, you are ready to Generate a
Runtime, for your window is complete.

* Note : KnowledgeBase components created for this tutorial all have the
prefix “Tutorial_”. This is to allow you to easily distinguish
them from the default KnowledgeBase components that ship
with the product yet are not used in the tutorial.

Positioning the Menu Buttons
When dragged onto the window, the menu buttons are not perfectly
centered. To position the button group if all of the buttons are still
selected:

1. Click on the group of buttons.

2. Drag the buttons to the center of the window.

If the buttons are not selected, to select the buttons and position them:

1. Click on the first button to select it.

2. Shift+Click on each of the other buttons to add them to the
selection group

3. Position the buttons by Clicking and Dragging them to the center
of the window.

* Note : You can use any of the selection / manipulation options dis-
cussed in the IDK Walk-through section of the tutorial to select /
manipulate the buttons as you like.

Save Subapplication
Before Generating a Runtime, you should save your Subapplication.
To save your Subapplication:

From the Standard toolbar choose the icon.

Drag the representation Tutorial_MenuOptions onto your
window from the Definitions Palette.

Click and drag the selected group of buttons to position them in
the center of the window.

1
2

Save your changes by clicking the save button in the Standard
toolbar.

5EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
The Finished Product
This is what your window should look like at the end of the last step.

6. GENERATE RUNTIME AND TRANSFER FILES

Compile the Subapplications into an executable, and transfer the
DDS physical files to the host via the Generate Runtime Wizard. The
Shell programs will not be transferred, since the host code has been
prepackaged for you and already exists in the MYTUTORIAL host
library. To generate a Runtime:

1. From the File menu > choose Generate Runtime... The Generate
Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, specify the following
information, then Click Next:

Runtime Type: Java and XHTML

Jacada Server
Platforms:

Windows NT(2000) x86

Subapplications to
Include:

All

Subapplications to
Process:

All

What your window should look like after positioning the menu
buttons in the center of the window.

Generate a Runtime in order to compile your Subapplication
into an executable

1

Select both Java and XHTML as your runtime types in the
Generate Runtime Wizard.

2

6EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
3. In the File Transfer screen, specify the following information,
then click Next:

* Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIAL01) as the Target
Library.

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIAL01) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process. The Generating the
Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process; this confirms that you can
continue with the next step.

6. Click Close to come out of the Generating the Runtime dialog.

7. ABOUT HOST CODE

To allow you to run through this tutorial at a reasonable rate of speed,
the host code for the MYTUTOR Application has been prepackaged
for you, and was installed in the MYTUTORIAL library created on
the host machine when you installed this product. In a real-world
scenario, you would write your host logic in this step of the
workflow. Since the host code has been prepackages for you, there is
no need and you can go on to the next section.

Transfer files: <Checked>

Host: <YourHostIPAddress>

Login User: <YourUserNameOnHost>

Login Password: <YourPasswordOnHost>

Target Library: MYTUTORIAL

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA

Fill out the File Transfer screen of the Generate Runtime
Wizard

3

Fill out the Host Connection and Application Information
screen of the Generate Runtime Wizard

4

The Generating the Runtime Dialog shows the status of a
Runtime Generation

6

5

7EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
8. COMPILE DDS AND PROGRAM FILE ON HOST

Verify that the JACADA library and the MYTUTORIAL library are
in your library list.

Compile the DDS physical file, PMENU$D and the RPG program
file PMENU in your MYTUTORIAL library.

* Note : If the FIRSTAPP application is still in your library list, make
sure to replace it with MYTUTORIAL.

9. ENSURE THE JACADA MONITOR IS ACTIVE

To ensure that the Jacada Monitor is active:

1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

10. RUN APPLICATION WITH A JAVA CLIENT

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

3. Click Finish to come out of the Run Application Wizard.
The Jacada Server is activated and your Default Browser window
is opened to the Jacada <ApplName>.html page.

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/
MYTUTOR.html

Make sure that the word ‘Active’ Appears in the Status column
to the right of the Jacada Monitor

2

Run your Application through the development environment by
choosing File > Run Application

1

Choose Java as your Runtime Type in the Run Application
Wizard

2

8EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your Java client Application.

* Note : Jacada Studio allows you to customize the look of the sign-on
<ApplName>.html window. The example to the right shows a
customized window.

The Finished Product
This is how your window should look after running your Application
with a Java client.

IMPORTANT! - The only working button in this window is the
‘Work with Resources’ button. In the following exercises, you will
build the ‘Add Resources’, ‘Work with Projects’ and ‘Add Projects’
Subapplications. Only click on the ‘Exit Application’ or ‘Work with
Resources’. Clicking on any other button will result in an error
message and a termination of your host session (much as it would if
you were working with DDSs).

* Note : If you clicked a non-working button go on to the ‘Close the
Jacada Server’section below and skip step number one.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by clicking the
‘Exit Application’ button in your runtime window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

Type your iSeries username and password into the appropriate
fields in the <Applename>.html page.

4

3

5

The final product of your efforts in this exercise.

Type ‘quit’ in the Jacada Server command window or press
Ctrl+C to close the Jacada Server

2

9EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
11. RUN APPLICATION WITH AN XHTML CLIENT

To run your Application with an XHTML client:

1. From the File menu > choose Run Application...

2. In the Run Application Wizard, specify the following settings:

3. Click Finish to come out of the Run Application Wizard. Wait a
couple of seconds. The Jacada Server is activated in a DOS
command window and your Default Browser window is opened to
the Jacada <ApplName>.html page.

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your HTML client Application.

* Note : Don’t forget to close the Jacada Server when you’re done.

Runtime Type: XHTML

Port Number: 8080

Application URL: http://localhost:8080/MYTUTOR-
xhtml.html

Run your Application through the development environment by
choosing File > Run Application

1

Choose XHTML as your Runtime Type in the Run Application
Wizard

2

1
0

Exercise 2 - Jacada Studio For iSeries

How It Works: The Main Menu Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next one. If you’d like to find
out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you ready?
Well, what are you waiting for?

Look for the ActionPerformed Method Attached to
the OnClick Event of the Menu Buttons
To view the association between the menu buttons and their
associated Methods:

1. Double click on any one of the menu buttons. The Component
Properties Dialog appears.

* Note : The Component Properties dialog automatically displays the
properties of the component that was double clicked.

2. Go to the Events Tab of the Component Properties dialog.
You can see that the ActionPerformed Method is attached to the
OnClick event of this component.

3. Click Cancel to come out of this dialog.

Events
Many graphical controls have Events associated with them. Events can be thought of as logical associations to physical actions such as the
clicking of a mouse on a button. When a Pushbutton is physically clicked at runtime, the graphical client can respond to a logical event called
“OnClick” and do something with the knowledge of that action. Even the displaying of a control by the client runtime code itself is a physical
action that has an "OnDisplay" event associated with it. Methods are used to define the actions that are performed when an Event is sensed.
Consequently, a Method can be triggered by the OnClick event that occurs when a user clicks on a control such as a button.

Double click on one of the menu buttons to access the
Component Properties Dialog

1

You can see that the ActionPerformed Method is attached to
the OnClick event of the menu button component.

2

1
1

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
Window Component Names
In the iSeries green screen world, keyboard actions are relatively limited – 24 Function Keys, Enter, Help Home, Page Up, and Page Down. These
“events” are automatically interpreted and managed by the operating system, and interactive programs are typically notified of keyboard activity
via Indicators. When a Function key is pressed, the operating system is notified of a keyboard Fkey 'action', strips off the FKey number, and sets
an associated Indicator that your program can respond to. Although Jacada Studio for iSeries fully supports Indicator activity, we have also
provided an alternative that allows your programs to easily recognize graphical events in a fashion very similar to Indicators. We provide a
Method that is associated with the OnClick event for graphical push-button.

By using a Prefix/Suffix syntax when naming pushbutton controls a
developer can put this Method to work to send an action notifier back
to his RPG or COBOL program. The naming syntax for a pushbutton
control is Prefix “Button” and Suffix “Action”. The Suffix or
“Action” portion may be fairly generic such as “Update”, “Add”, or
“Exit”. The button name would then be ButtonAdd, or ButtonExit.
A more specific implementation is used in the PMENU pushbuttons
where each button action identifies a function request.

The button name ButtonWWR is automatically decomposed by the
ActionPerformed Method to send a value of “WWR” back to the
host menu program (PMENU) in a hidden field called JSTACT. The
menu program can then initiate a call to a program based on logic that
evaluates the content of field JSTACT. In the case of the PMENU
program the “Work With Resources” program is called when the
value of JSTACT is equal to "WWR". (The “action” field JSTACT
is predefined in the Jacada Studio Knowledgebase and is
automatically included on every Jacada Studio for iSeries shipped
window layout as a hidden field.)

Values get passed to the host program during runtime in the following
way:

1. The ACTION string (WWR) of the button’s component name is
extracted by the ActionPerformed Method when an OnClick event
occurs.

The ActionPerformed Method:

2. Updates the VariableAction variable with the value of the
ACTION string (WWR).

3. Passes the value of the ACTION string (WWR) from the
VariableAction variable to the JSTACT field in the DDS Physical
File (the buffer).

4. Sends value WWR in JSTACT to the RPG code.

 C* Exit Not Clicked

 C* "Change original shell which had IFEQ"

 C JSTACT IFNE 'EXIT'

 C*

 C* Work with Projects Clicked

 C JSTACT IFEQ 'WWP'

 C CALL 'PPROJ'

 C MOVEL*BLANKS JSTACT

 C ENDIF

 C*

 C* Work with Resources Clicked

 C JSTACT IFEQ 'WWR'

 C CALL 'PRESO'

 C ENDIF

Sample Code taken from the program logic written for the
PMENU Subapplication of the ITUTOR Application.

RPG Code
JSTACT = WWR

ButtonWWR

Window Component
VariableAction = WWR

Window Field
JSTACT = WWR

ActionPerformed
Method

Client

Server

Host

OnClick

Update

Update

Update

1

2

3

4

1
2

Exercise 2 - Jacada Studio For iSeries

Optional Exercises: The Main Menu Window

If you feel comfortable with the level of detail provided in the previous exercise, feel free to skip this exercise and go on to the next one. If you’d
like to “break it down” some more - to work with the “nuts and bolts” a little bit - how about building the menu items yourself? In this section you
learn all of the steps necessary to turn the simple representations in the default KnowledgeBase that ships with the product, into complex
representations like the Tutorial_MenuOption representation used in the previous exercise. Are you ready? Well, what are you waiting for?

The major steps to this exercise are:

1. Delete the Buttons that Were Inserted by the
Tutorial_MenuOption Representation

2. Drag a Simple Button Representation onto Window
3. Set Button Component Name
4. Set Button Style Properties
5. Copy Paste Button
6. Position Buttons in Center of Window
7. Generate Runtime and Run Application

1. DELETE THE BUTTONS THAT WERE INSERTED BY
THE TUTORIAL_MENUOPTION REPRESENTATION

Simply select each of the buttons on your window and press the
Delete key on your keyboard to delete the items. When the “Delete
Selected Controls?” message appears, click Yes.

2. DRAG A SIMPLE BUTTON REPRESENTATION ONTO
WINDOW

We will first create the “Add Resources” button, the top left button in
the button arrangement. From the Definitions Palette, drag a simple
Button representation onto the window.

3. SET BUTTON COMPONENT NAME

In the Window Components Palette, set the button component name
property, to give the button an explicit name that will be used to call
the button from the host code.

1. Select the added Button in the window. The added button’s
automatically given component name will subsequently be selected
in the Window Components Palette.

2. Right Click on the button name > Rename

The final look of the Representation that you will build in this
exercise.

Drag a simple Button
representation onto your window
from the Definitions Palette.

1

Rename the component in order to call the button explicitly
from the host code.

2

1
3

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
* Note : If the Window Components Palette is behind the window and
being obscured by it, use the F12 function key on your keyboard
to bring the palette to the top of the window. The F12 function
key brings all palettes to the top layer of visible items.

3. Type ‘AR’ in ALL CAPS after the button component name to
create the component name ButtonAR

4. Verify that the correct button has been renamed by selecting the
button component name that you created ButtonAR in the
Window Components Palette. This action will consequently select
the button representation in the window.

4. SET BUTTON STYLE PROPERTIES

In the Component Editing section of the Window Components
Palette, set the button style properties

5. COPY PASTE BUTTON

The easiest way to create the other three menu buttons without again
setting all the component properties that you set in the previous step
is to copy paste the button that you created. You can use your default
windows shortcuts of:

Or you can Right Click on a button and choose Copy or Paste from
the Design View Right Mouse Button Menu.

Text: <none>

Button Styles:
 Squared Corners Yes

Size:
 Width:
 Height:

230
230

Images:
 Standard \JacadaStudio\appls\mytutor\Bitmaps\

top_left.jpg

Placement:
 Bitmap Relative: On Top

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+Z Undo

Change the button’s component name to ButtonAR. Select the
renamed component and verify that the correct button
component is selected in the window

4
3

This is what you should see after having set the Button Style
properties.

Use the Window shortcuts to copy paste components to and
from your screen or use the Right Mouse Button Menu

1
4

EXERCISE 2 - JACADA STUDIO FOR ISERIES
Create the Main Menu Window
Change Component Names and Image Associations

Make sure that you change the images associated with the new
buttons and their component names as follows:

6. POSITION BUTTONS IN CENTER OF WINDOW

Position the buttons in the center of the window using the Control
Editing and Manipulation Options discussed in step 12 of the IDK
Walk-through section of this tutorial.

7. GENERATE RUNTIME AND RUN APPLICATION

You are done! Do you want to run your Application? It’s easy:

1. Generate a Runtime, transferring files to the host.

2. Make sure the Jacada Monitor is Active.

3. Run the Application.

How did you do?

* Note : Did you remember to close your application and the Jacada
Server?

It is not necessary to recompile the DDS physical file and RPG
program on the iSeries unless a change was made to either (a) the
number of fields in the IDK subapplication or (b) the RPG program.
Although it is not necessary to recompile in these situations, we
recommend you recompile upon each change to the subapplication
for the duration of this tutorial, until you are thoroughly acquainted
with the workflow. Recompiling your DDS physical file and RPG
program on the iSeries with every change to the subapplication will
spare you unnecessary troubleshooting later.

* Note : If you did not exit your browser since the last time you ran a
runtime, you may receive a “Version Mismatch” message. In
this case, hold down the Control key on your keyboard while
clicking the ‘Refresh’ button in your browser window to clear
your browser’s cache.

Button Component
Name

Attached Bitmap

ButtonWWR top_right.jpg

ButtonWWP bottom_right.jpg

ButtonAP bottom_left.jpg

Component
names of the
four menu
buttons

Change the component names of the new buttons

Hold down the Control key on your keyboard while you click
the ‘Refresh’ button in your browser window to clear your
browser’s cache if you receive a “Version Mismatch” error
while trying to run a runtime.

1

Exercise 3 - Jacada Studio for iSeries

Create the Add / Edit Resource Window

Objectives:
• To provide an exercise that replicates the Add/Edit Resource window in the pre-packaged iTutor application

• To build a window in which new data can be Added or existing data can be retrieved and Updated

• To examine dynamic GUI display alternatives to Indicator driven Display File behaviors

- Conditional runtime display driven by client events (based on program mode of Add or Update)

- Resource # show/hide depending on mode

- Update or Add button displayed depending on mode

• Passing variable text display values from a host program

• To gain an understanding of the relationship between fields and their graphical representations

• To gain a better understanding of client-controlled application activity as an alternative to host-controlled application activity

- Data validation at the client or server instead of the host

• Using a graphical link control to launch an external URL in a separate browser frame

• Briefly examine the host code to understand what was generated and what process logic must be added to complete the program

In this exercise, you create the Add / Edit Resources window of the ITUTOR Application. Your MYTUTOR Application should already contain
five of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu Window that you created in the
previous exercise. This window is used both as an Add Resources window and as an Edit Resources window, depending on the entry point chosen
by the user. The purpose of this exercise is to expose you to the use of server logic as a means of controlling conditional variations in the interface,
and as an alternative to driving those variations from the host using Indicators and DDSs. The Method implementations in this exercise are good
representations of this capability. The value idea is to simplify host business logic by reducing presentation-oriented coding that could be
managed in the presentation layer. In this exercise, you will experience how easily and speedily a window can be constructed and deployed, with
a predefined KnowledgeBase.

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

2EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
The major steps to this exercise are:

1. Window Design Specifications
2. Create the PADDRE Subapplication
3. The Window Header
4. Add Fields to the Window
5. The “Resource #” Representation
6. The Add and Update Buttons
7. Error Handling
8. Generate Runtime and Transfer Files
9. About Host Code
10. Compile DDS and Program File on Host
11. Run Application

1. WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication interface,
between when it is accessed through ‘Add’ mode and when it is
accessed through ‘Edit’ mode. The differences are:

In ‘Add’ mode:

1. The window header says “Add Resource”.

2. There is an ‘Add’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

In ‘Edit’ mode:

1. The window header says “Edit Resource”

2. There is an ‘Update’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

3. There is a “Resource #” representation.

* Note : You will reuse GUI elements from the PMENU (Main Menu)
window in this Subapplication. You will do so via the Window
Layout feature.

The final product of your efforts in this exercise. The look of the
PADDRE Subapplication, when accessed through ‘Add’ mode.

‘Add’ Button

‘Add Resource’ Header

2

The final product of your efforts in this exercise. The look of the
PADDRE Subapplication, when accessed through ‘Edit’ mode.

‘Update’ Button

‘Edit Resource’ Header

‘Resource #’
Representation

3

2

1

1

3EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
2. CREATE THE PADDRE SUBAPPLICATION

In this next step, you create the PADDRE Subapplication in your
MYTUTOR Application. In this exercise, you apply a prebuilt
Window Layout called Tutorial_BasicLayout to your Subapplication.

Open the IDK and the MYTUTOR Application
To open the IDK interface and the MYTUTOR Application:

1. From your Windows Start menu > choose Programs >
Jacada Studio for iSeries > Jacada Studio for iSeries
The Jacada Studio Interface Development Kit (IDK) is invoked.

2. From the IDK File menu > choose Open > Open Application.
The Open Application Dialog is invoked.

3. In the Open Application Dialog > Select MYTUTOR from the
Application Name List > Click OK.

Create the PADDRE Subapplication
1. From the Subapplication Menu > New ... The New

Subapplication Wizard is invoked.

2. In the New Subapplication Wizard, specify the following
Subapplication properties:

3. Click Finish to come out of the New Subapplication Wizard.

Leveraging Common GUI Look Between Layouts
Do you remember the Window Layout that you applied to the Main
Menu window in the last exercise? Did you notice the similarities
between the Window Layout used in the last exercise and the
Window Layout used in this one? The Window Layout feature allows
us to leverage the common look between Window Layouts by re-
using elements from one Window Layout in another. You can also
modify existing Window Layout templates to enhance the
functionality and GUI look between windows.

Subapplication Name: PADDRE

Popup Window: Unchecked

Window Layout: Tutorial_BasicLayout

Subapplication
Description: <none>

Choose File > Open > Open Application. Select MYTUTOR
from the Application name List and click OK to open the
MYTUTOR application.

2

3

In the Select Window Layout step of the New Subapplication
Wizard, choose the Tutorial_BasicLayout Window Layout.

2

Elements that were used in the Tutorial_MenuLayout Window
Layout used in the Main Menu window that were re-used in the
Tutorial_BasicLayout Window Layout applied to this window.

Images

FrameImage with Text

4EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
In the Tutorial_BasicLayout Window Layout applied to this
window, a ‘Main Menu’ button, ‘Back’ button and link to the Jacada
Website were added to enhance the functionality and GUI look of the
window.

Elements added to the Window by the
Tutorial_MenuLayout Window Layout
Did you notice the various elements that were brought into your
Application when you selected the Tutorial_BasicLayout Window
Layout in the New Subapplication Wizard?

Checking the Contents of the Window
Check the contents of the Window Components Palette to see the
GUI components brought in by the Window Layout.

Check the contents of the Window Fields Palette to see the Window
Fields brought in by the Window Layout.

Elements added to the window by the Tutorial_BasicLayout
Window Layout

Link Control

Image

Frame

Image with Text

‘Back’
Button

‘Main Menu’
Button

Frame
Image

Check which Fields and GUI components were added to the
window by the Tutorial_BasicLayout Window Layout

FYI: The Link Control

A Link control was placed in the upper right corner of the window when you applied the Tutorial_BasicLayout window layout in the last
step. This link control has the Jacada website defined as a resource and will take the user to the Jacada website when he clicks on the link
during runtime. The link representation can have an image attached to it, or it could just be plain text. This link control was defined globally
in the KnowledgeBase, so that it could be used throughout the Application via the window layout.

In Jacada Studio, links may be used as URL Links or as Event Links. Event Links are controls that activate the IDK OnClick event. URL
links are controls that points to an Http resource. When URL links are pressed they perform an action that is determined by the resource
type. Some Examples: Open an HTML Page, Show an image in a separate window, Send e-mail, Download a File, Open a Word Document.

5EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
3. THE WINDOW HEADER

This example is to show you how a common behavior can be
controlled. We defined the text that appears in the header in the host
code, and passed it to a field attached to the window header
representation. Let’s have a look:

1. Double click on the Window Header representation that was
brought into the window by the Tutorial_BasicLayout window
layout. The Component Properties Dialog appears.

* Note : In the Style Tab of this dialog, you can see that this component is
just a simple button with an image association and the text
“Window Header”. We will override this text setting via the
RPG code in the host program. Check the Events Tab and you
will see that there is no Method associated with this control.

2. Go to the Buffer Tab.

3. View the connection between the window component and the
FDHEAD field.

* Note : This connection will be used to transfer the appropriate text to
this header, depending on the mode in which this window is
accessed.

Double Click a control and go to the Buffer Tab to see and edit
the connection between a window component and a field.

2
1

3

In the Style Tab of this dialog, you can see that this component
is just a simple button with an image association and the text
“Window Header”

‘Window
Header’ text

Image
Association

Check the Events Tab to see that there is no Method
associated with this control.

No Associated
Methods

6EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
You can also view the connection between the window component
and the FDHEAD field:

1. Select the Window Header component in the window.

2. Look at the Window Fields Palette. The FDHEAD field is selected.

* Note : The association between a component and a field can only be
modified through the Component Properties Dialog.

Now, let’s see the code.

1. Open the PADDRE program file on the host.

2. Notice the ‘Window Title’ I specifications.

3. Notice the section that populates the window title.

4. ADD FIELDS TO THE WINDOW
Until now, when you needed to add a Representation to the window,
you dragged it from the Definitions Palette, which was set to
Representation Definition View. In this step, you will add
Representation Definitions to the window by dragging fields onto
your window from Field Definitions View of the Definitions Palette.
You will then choose the representations associated with the field
from a “Short List”.

Click the Field Definitions View Icon in the Definitions Palette to
see the list of fields defined in the KnowledgeBase.

Select a control and look in the Window Fields Palette to see
the connection between a window component and a field. You
cannot modify the connection from the Window Fields Palette.

2

1

 * Place your I specifications here

 * Window Title

I ' Edit Resource' C ETITLE

I ' Add Resource' C ATITLE

 * Populate Window Title

C MODE IFEQ 'EDIT'

C MOVELETITLE FDHEAD

C ELSE

C MOVELATITLE FDHEAD

C ENDIF

Sample Code taken from the program logic written for the
PADDRE Subapplication of the ITUTOR application. Code
populates FDHEAD field.

2

3

Field Definition
View Icon

Click on the Field Definitions View Icon in the Definitions
Palette to see the list of fields defined in the KnowledgeBase.

7EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
To add the remaining Representations to your Subapplication, refer to
the table below:

1. Drag the fields in the Window Fields column onto the window,
from the Definitions Palette.
The Select Field Representation Dialog appears.

2. Select the representation in the Representations column, from the
Short List in the Select Field Representation Dialog.

3. Click OK to come out of the dialog. Your representation is added
to the window. It is associated with the field that you dragged from
the Definitions Palette.

Window Fields Representations

FDRESN Tutorial_Label_OutputField

FDFNAM Tutorial_Label_InputField

FDLNAM Tutorial_Label_InputField

FDTITL Tutorial_Label_Combobox_Title

FDRCOM Tutorial_Label_InputField

Drag fields onto the window, then choose the correct
representation from the _Short List_ in the Select Field
Representations Dialog

1

2

3

1

FYI: The Field Driven Design Concept

In the green-screen world, the appearance and behavior of a field on a Display File are controlled with Attributes and Indicators.
Variations in appearance are fairly limited to text-oriented attributes like coloration, blinking, reverse image, etc. Additionally, a field may
have variable behavior such as being an Output Only field under one condition and Input Only under another circumstance. Each time a
new Display File is created, the display attributes for any particular field must be redefined. Some Field properties such as length, data
type, and Field Text or Column Headings can be standardized by their definitions in Physical File DDS, but most display properties must be
recorded in each Display File DDS, which is not only tedious but opens the application to inconsistencies among interfaces.

Jacada Studio for iSeries has a simpler, more consistent approach for allowing fields to be graphically “represented” in various fashions at
different times in an application. This concept of representation not only allows full exploitation of the wide range of appearance and
behavior permutations available in the graphical world, but also supports the enforcement of consistent graphical standards at the field
level. For example, a single field may be used at different times in the application as Input Only, Output Only, or Both. Similarly, a field may
be graphically represented at different times by a Check Box, a Combo Box, or a Radio Button on Input, and a Static Control with a large,
red, bold font on Output. By associating a field with its most often used representations, and storing these associations in the
Knowledgebase, a developer builds a collection of standard representations for each field that can be rapidly reused instead of re-defining
them for each window. We call this collection of most often used representations for any given field its 'short list'.

* Similar to the Text or Column Heading properties in PF DDS, Jacada Studio can assign a standard Label at the field level and implement
that Label consistently in a field's short list of representations.

8EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
Arrange the Position of the Added Representations
Arrange the position of the added representations according to the
image to your right. For more information on control manipulation,
please refer to the IDK Walk-through section of this tutorial.

Add Variable Representations to the Window
Most representations have a visible control on the window. In this
step, add the Variable Representation Definitions in the table below
to the window by dragging Window Fields onto your window from
Field Definitions View of the Definitions Palette. Then, choose the
Representations associated with the field from a “Short List” of
favorites. Drag the following fields onto your Subapplication
window:

* Note : When you drag these fields onto the window, it will seem as if
nothing has happened, and no representation will appear. This is
because these fields are attached to hidden variable
representations.

To make sure that these fields were added to the window: Check that
the fields JSTFOC and FDMODE reside in the list of fields in the
Window Fields Palette. Check that the VariableFocus and
VariableMode variables exist in the list of window components in the
Window Components Palette. (they will have an icon with a picture
of a ghost)

* Note : See the ‘How It Works’ section at the end of the exercises for a
detailed explanation of the runtime behavior between client,
server and host.The VariableFocus representation connected to
the JSTFOC field is explained in the next exercise.

5. THE “RESOURCE #” REPRESENTATION

According to our project requirements, the Resource Number
controls must appear on the window if it is accessed in Edit mode,
but not if it is accessed in Add mode. Let’s use a show/hide Method
and the FDMODE field again to control this interface variation.

Window Fields Representations

JSTFOC Tutorial_Variable_Focus

FDMODE Tutorial_Variable_Mode

Arrange the position of the added representations like this.

Check the contents of the Window Components and Window
Fields palettes to ensure the variable representations have
been added to your Subapplication.

The Static and Output controls that make up the ‘Resource #’
representation.

The Static
Control

The Output
Control

9EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
The “Resource #” representation that we added to our window
consists of two controls: The Static control (with the text “Resource
#”) and the Output control (with the text “Output”). The condition of
whether the “Resource #” controls are hidden or displayed is
according to the mode you are in.

The Tutorial_HideShowControlBasedOnMode Method attached to
the OnDisplay event of both components of this representation,
checks the value of the VariableMode variable (updated with the
value of FDMODE), and then hides or shows the control based on its
value. The value of the FDMODE field is determined by host logic.

To connect the “Resource #” representation’s Static component to
this Method:

1. Double click the static component with the text “Resource #” in
your window. The Control Properties Dialog appears.

2. Go to the Events Tab.

3. In the Events combobox > select the OnDisplay event.

4. Select the Tutorial_HideShowControlBasedOnMode Method
from the General Methods tree.

5. Click on the Link button to link the Method to the OnDisplay
event of this control.

6. Go to the Manager Tab.

7. Check the Runtime data flow checkbox.

* Note : You must check the runtime data flow checkbox because there
must be data flow from the host to the server in order for the
method that performs the hide/show according to the value of
the FDMODE field to update with the value of FDMODE from
the host code during runtime.

8. Click OK to come out of the Control Properties Dialog.

To connect the “Resource #” representation’s Output component to
this Method:

1. Double click the Output component in your window. The Control
Properties Dialog appears.

2. Go to the Events Tab.

3. In the Events combobox > select the OnDisplay event.

4. Select the Tutorial_HideShowControlBasedOnMode Method
from the General Methods tree.

5. Click on the Link button to link the Method to the OnDisplay
event of this control.

6. Click OK to come out of the Control Properties Dialog.

* Note : The runtime data flow checkbox of this component is checked
by default.

Attach the Tutorial_HideShowControlBasedOnMode Method to
the OnDisplay event of the Static component.

2

3

4

Check the Runtime data flow checkbox in the Manager Tab of
the Static component.

6

7

Attach the Tutorial_HideShowControlBasedOnMode Method to
the OnDisplay event of the Output component.

2

3

4

1
0

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
6. THE ADD AND UPDATE BUTTONS

In this step, you will drag the representations created for the Add and
Update buttons onto the window. You will attach Methods to the
OnDisplay event of both of these buttons, that will control which
button is displayed based on the value of the VariableMode variable.
OnDisplay Methods are executed on the server whenever the host
program sends a window. In this way, you control which button is
shown, and when. This is one alternative to driving interface
variations from the host using Indicators and DDSs.

You will then attach a Method to the OnClick event of these buttons.
This Method will perform server-side error handling when a button
attached to it is clicked.

* Note : In the next exercise, you will see how error-handling can be
performed host-side using the Jacada Studio IDK.

The Add Button

To add the ‘Add’ Button to your window, and control the
functionality:

1. From Representations View on the Definitions Palette > Drag the
Tutorial_Add representation onto your window > Place it to the
left of the Back button.

2. Double-Click the Add Button.
The Component Properties Dialog is invoked.

3. Go to the Events Tab of the Component Properties Dialog.

4. In the Event combobox > make sure the event is OnClick.

5. Scroll down the Activate Method list until you see the
Tutorial_ActionPerformedWithErrorHandling Method.

Drag the Tutorial_Add representation onto your window and
place it to the left of the Back button.

12

In the Events Tab of the Control properties Dialog, select the
Tutorial_ActionPerformedWithErrorHandling Method and click
the Link button.

5

3

4

1
1

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
6. Select the Method > Click the Link button.

7. In the Event combobox > choose the OnDisplay event.

8. Scroll down the Activate Method list until you see the
Tutorial_AddButton_OnDisplay Method.

* Note : Double click this Method in the Events Tab of the Component
Properties Dialog to view the code. This Method checks the
value of the VariableMode variable (populated by FDMODE) to
see whether the window was accessed in ‘Add’ or ‘Edit’ mode.
If the window was accessed in ‘Edit’ mode, the button is hidden.
If the window was accessed in ‘Add’ mode, the button is
displayed.

9. Select the Method > Click the Link button.

10. Click OK to come out of the Component Properties Dialog.

The Update Button

To add the ‘Update’ Button to your window, and control the
functionality:

1. From Representations View on the Definitions Palette > Drag the
Tutorial_Update representation onto your window > Place it on
top of the ‘Add’ button.

* Note : Don’t worry about aligning the ‘Update’ button precisely on top
of the ‘Add’ button. We will align the buttons in a later step.

2. Double-Click the Update Button. The Component Properties
Dialog is invoked.

3. Go to the Events Tab of the Component Properties Dialog.

4. In the Event combobox > make sure the event is OnClick.

5. Scroll down the Activate Method list until you see the
Tutorial_ActionPerformedWithErrorHandling Method.

6. Select the Method > Click the Link button.

7. In the Event combobox > choose the OnDisplay event.

8. Scroll down the Activate Method list until you see the
Tutorial_UpdateButton_OnDisplay Method.

9. Select the Method > Click the Link button.

10. Click OK to come out of the Component Properties Dialog.

In the Events combobox, choose the OnDisplay event and link
the Tutorial_AddButton_OnDisplay Method to it.

6

7

8

9

Drag the Tutorial_Update representation onto your window and
place on top of the ‘Add’ button.

2 1

In the Events Tab, attach the
Tutorial_ActionPerformedWithErrorHandling Method to the
OnClick event and the Tutorial_UpdateButton_OnDisplay
Method to the OnDisplay event.

5

8

6

1
2

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
Align the Buttons
Align the ‘Update’ and ‘Add’ buttons with the ‘Back’ button and
with each other.

1. Select the ‘Update’ button > Shift+Click the ‘Back’ button to add
it to the selection group. Notice the ‘Back’ button has emphasized
handles, making it the leading control.

2. Right-Click anywhere on the window > Choose Align Top from
the right mouse button menu.

3. Click the window client to deselect all controls.

4. Select the ‘Update’ button > Right-Click to bring up the right
mouse button menu > Choose Send to Back. The ‘Add’ button is
now on top.

5. Select the ‘Add’ button > Shift+Click the ‘Back’ button to add it
to the selection group.

6. Right-Click anywhere on the window > Choose Align Top from
the right mouse button menu.

7. Click+Drag a rectangle selection on the ‘Add’ and ‘Update’
Buttons. Do not encompass the buttons fully or you may select the
‘Back’ button as well by mistake. It is enough that the selection
window touches the two buttons for them to be selected. If the
‘Update’ button is not visible because it is completely covered by
the ‘Add’ button...dont worry, it will be included in the selection.

8. Right-Click anywhere on the window > Choose Align Left from
the right mouse button menu. The ‘Add’ and ‘Update’ buttons are
now perfectly aligned with the back button and with each other.

* Note : For more information on control manipulation, please refer to
the IDK Walk-through section of this tutorial.

7. ERROR HANDLING

This exercise exhibits error handling with the use on server-side code
and not any host side code. The advantage of server-side code is to
validate the correct data is being accepted prior to passing this data to
the host data bases. This can help to improve performance by not
sending data to the host and validating it there and then sending it
back to the presentation for user correction. The example of a server-
side validation, in this case, is done through the use of a method
called Tutorial_ActionPerformedwithErrorHandling which is linked
to both the “Add” and “Update” buttons. The “Add” is invoked when
using the Add Resource window and the “Update” is used when in
the Edit Resource Window. Each of these buttons is the only button
on the respective window which sends information to either add or
modify the data bases.

Align the ‘Add’ and ‘Update’ buttons with the ‘Back’ button and
with each other

1

2 4

7

On error - the fields background is set to red and a message is
displayed in the DIL.

Error Message

Red Field
Background

1
3

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
The method is written to verify that both the FDFNAM (First Name
field), FDLNAM (Last Name field), and FDTITL (Title) fields do not
contain all blanks. Since these are required fields, each field is
checked to make sure some text entry has been type before
submitting this data. If one of these fields contains all blanks, an error
message is presented after a refresh of the window is done. The
refresh allows an OnDisplay method
Tutorial_ErrorFocus_OnDisplay linked to each of these field to
activate and change the associated representation background color
to turn red and sets the cursor position to the field with all blanks.

Example of the error messages sent:

8. GENERATE RUNTIME AND TRANSFER FILES

Compile the Subapplications into an executable, and transfer the
DDS physical files to the host via the Generate Runtime Wizard. The
automatically generated Shell programs will not be transferred for
this subapplication, since the host code has been prepackaged for you
and already exists in the MYTUTORIAL host library.

To generate a Runtime:

1. From the File menu > choose Generate Runtime... The Generate
Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

* Note : The Only new and modified option allows you to only compile
the Subapplications that were modified. Only the modified DDS
physical file and RPG program of subapplication PADDRE are
FTP’d back to the host, and only they need to be compiled.

Field Error Message

First Name “First Name Required”

Last Name “Last Name Required”

Title “Title Required”

Runtime Type: Java

Jacada Server
Platforms:

Windows NT(2000) x86

Subapplications to
Include:

All

Subapplications to
Process:

Only new and modified

IDK method lines that set background to red.

Generate a Runtime in order to compile your SubApplication
into an executable

1

Select to process only new and modified subapplications.

2

1
4

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
3. In the File Transfer screen, specify the following information,
then click Next:

* Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIAL01) as the Target
Library.

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIAL01) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to complete the Generate Runtime Wizard, and
commence with the compilation process.
The Generating the Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process, this confirms that the compile
was successful and that you can continue to the next step.

6. Click Close to exit the Generating the Runtime dialog.

Transfer Files: <checked>

Host: <YourHostIPAddress>

Login User: <YourUserNameOnHost>

Login Password: <YourPasswordOnHost>

Target Library: MYTUTORIAL

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA

Fill out the File Transfer screen of the Generate Runtime
Wizard

3

Fill out the Host Connection and Application Information
screen of the Generate Runtime Wizard

4

1
5

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
9. ABOUT HOST CODE

Let’s look at the block of code to the right, taken from the program
logic written for the PADDRE Subapplication of the ITUTOR demo.

This example shows how to read a particular record requested by the
user, and how to display the information from the record on the
window. In this example, database fields are moved to the window
buffer fields. This process is similar to the one you use today, when
working with display files.

10. COMPILE DDS AND PROGRAM FILE ON HOST

Verify that the JACADA library is included in your library list.

Compile the DDS physical file, PADDRE$D and the RPG program
file PADDRE in your MYTUTORIAL library.

11. RUN APPLICATION

In order to run your Application, you must first verify that the Jacada
monitor is active. Only then can you run your Application.

Ensure the Jacada Monitor is Active
To ensure that the Jacada Monitor is active:

1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

Run your Application with a JAVA Client
Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

C***

C* Load Data for Edit Mode
C***

C EDTMOD BEGSR

C RES# CHAINRESR 81

C *IN81 IFEQ '0'

C MOVE RERESN FDRESN

C MOVE RELNAM FDLNAM

C MOVE REFNAM FDFNAM

C MOVELRERCOM FDRCOM

C MOVELRETITL FDTITL

C ENDIF

C ENDSR

Sample Code taken from the program logic written for the
PADDRE Subapplication of the ITUTORIAL application.

Run your application through the development environment by
choosing File > Run Application

1

1
6

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

3. Click Finish to come out of the Run Application Wizard.
The Jacada Server is activated and your Default Browser window
is opened to the Jacada <ApplName>.html page.

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your JAVA client Application.

Navigate to the Add / Edit Resource Window
Navigate to the PADDRE Subapplication by using the diagram
provided for you to the right. Navigate to the Subapplication in both
Add and Edit mode to see the final product of your efforts in this
exercise.

The Finished Product
This is what your window should look like when accessed in ‘Add’
mode in the Java client.

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/MYTUTOR.html

PRESO
Work with Resources

PADDRE
Add / Edit Resource

Add

Edit

Navigate to the PADDRE SubApplication in both Add and Edit
mode.

Existing
SubApplication
(prepackaged)

PMENU
Main Menu

Add

The final product of your efforts in this exercise. The look of the
PADDRE SubApplication, when accessed through ‘Add’ mode.

1
7

EXERCISE 3 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Resource Window
This is what your window should look like when accessed in ‘Edit’
mode in the Java client.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

The final product of your efforts in this exercise. The look of the
PADDRE SubApplication, when accessed through ‘Edit’ mode.

Type ‘quit’ in the Jacada Server command window or press
Ctrl+C to close the Jacada Server

2

1
8

Exercise 3 - Jacada Studio For iSeries

How It Works: The Add / Edit Resource Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you
ready?

The VariableMode Hidden Variable

Remember the Methods that you attached to the OnDisplay events of
the ‘Add’ and ‘Update’ buttons? These Methods are used to control
whether the button will be displayed or not during runtime. To see
how this works, open the PADDRE program on the host and take a
look. Heres how it works:

1. The RPG program receives the MODE parameter from the
program from which it was called. The value of the MODE
parameter is either ADD or EDIT depending on the program from
which this screen was called. The RPG program moves the value
of the MODE field to the FDMODE field.

2. When the RPG program gets to a READ statement, the screen is
sent to the Jacada Server with the value of the FDMODE field.

3. On the server, the value of the FDMODE field is passed to the
VariableMode variable.

4. On the server, all OnDisplay Methods are executed when the new
screen loads or is refreshed.

5. Add/UpdateButton_OnDisplay Method extracts value of
VariableMode and decides whether to display button depending on
that value.

RPG Code
FDMODE = ADD

Hide / Show Button

Window Component
VariableMode = ADD

Window Field
FDMODE = ADD

Add/Update Button
_OnDisplay

Method

Client

Server

Host

Hide / Show

Update

Update

Update

5

4

3

2

1

Exercise 4 - Jacada Studio for iSeries

Create the Add / Edit Project Window

Objectives:
• To provide an exercise that replicates the Add/Edit Project window in the pre-packaged iTutor application

• To build a window in which new data can be Added or existing data can be retrieved and Updated

• To examine dynamic GUI display alternatives to Indicator driven Display File behaviors

- Conditional runtime display driven by client events (based on program mode of Add or Update)

- Project # show/hide depending on mode

- Variable Text and behavior (Update or Add) of a single Action button displayed depending on mode

- Disabling an input capable field at the client based on program mode

• Using methods to communicate the results of data validation performed at the host to the client

• Using code extensions to add advanced GUI controls in XHTML (date control)

In this exercise, you create the Add / Edit Projects window of the ITUTOR Application. Your MYTUTOR Application should already contain six
of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu and Add/Edit Resource windows that
you created in the previous exercises. This window is used both as an Add Project window and as an Edit Project window, depending on the entry
point chosen by the user. In the last exercise, you attached a Method that performed server-side error handling. In this exercise, we will show you
one way of performing error handling through your RPG program’s business logic. In the last exercise, you attached a Method that performed a
hide / show on the ‘Add’ and ‘Update’ buttons, depending on the mode that you were in. In this exercise, we will show you another way of
achieving the same results, server-side. Last but not least, you’ll run an XHTML runtime, and extend your HTML code to achieve the desired
results. In this exercise, you will experience how easily and speedily a window can be constructed and deployed, with a predefined
KnowledgeBase.

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

2EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
The major steps to this exercise are:

1. Window Design Specifications
2. Create the PADDPR Subapplication
3. The Add and Update Button
4. Adding Fields to the Window
5. Error Handling On The Host
6. The “Project #” Representation
7. Generate Runtime and Transfer Files
8. Compile DDS and Program File on Host
9. Run Application with a Java Client
10. Extend the HTML Code to Include Date Controls
11. Run Application with an XHTML Client

1. WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication interface,
between when it is accessed through ‘Add’ mode and when it is
accessed through ‘Edit’ mode. The differences are:

In “Add” mode:

1. The window header says “Add Project”.

2. There is an “Add” Button, to the left of the “Back” button in the
bottom right corner of the window.

In ‘Edit’ mode:

1. The window header says “Edit Project”

2. There is an ‘Update’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

3. There is a “Project #” representation.

4. The ‘Name’ textbox is disabled.

In this Subapplication, you must also take into account the
requirement to support both the Java and XHTML runtimes with date
controls. HTML support of date controls varies from Java today.
Therefore, you will extend your HTML code with a prepackaged
extension. This extension will allow you to implement the date
control in the HTML runtime and provide you an example of the
extension architecture.

The final product of your efforts in this exercise. The look of the
PADDPR Subapplication, when accessed through ‘Add’ mode.

‘Add’ Button

‘Add Project’ Header

2

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Edit’ mode.

‘Update’ Button

‘Edit Project’ Header

‘Project #’ Representation
Disabled Textbox

2

3
4

1

1

3EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
.

2. CREATE THE PADDPR SUBAPPLICATION

In this step, you create the PADDPR Subapplication in your
MYTUTOR Application. Make sure that the Application combobox
shows that you are in the MYTUTOR Application before proceeding.
In this exercise, you apply a prebuilt Window Layout called
Tutorial_BasicLayout to your Subapplication.

1. Open the Jacada Studio Interface Development Kit (IDK) and the
MYTUTOR Application

2. From the Subapplication Menu > New ... The New
Subapplication Wizard is invoked.

3. In the New Subapplication Wizard, specify the following
Subapplication properties:

4. Click Finish to come out of the New Subapplication Wizard.

3. THE ADD AND UPDATE BUTTON

In the last exercise, you used two buttons and controlled the display
with a method that controlled which button is displayed based on the
value of the VariableMode variable.

FYI: The IDK Date Control

The IDK date control is a specialized edit field that enables your
users to easily enter data that is intended to be interpreted as date
information. The date control contains the following features:

1. Format masking that limits the allowed input characters.
2. Year data input as two digits is automatically translated to four

digit data using the defined base year.
3. A calendar tool associated with the date control allows users

to choose a date graphically.

Subapplication Name: PADDPR

Popup Window: Unchecked

Window Layout: Tutorial_BasicLayout

Subapplication
Description: <none>

In the Select Window Layout step of the New Subapplication
Wizard, choose the Tutorial_BasicLayout Window Layout.

3

4EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
In this exercise, you use only one button. You will attach ‘”SetText”
Methods to the OnDisplay and OnClick events of this button. The
method will change the text that appears on the button, based on the
value of the VariableMode variable. This is another example of
controlling interface variations from the host, similar to using
Indicators and DDSs.

To add a button to your window, and control its functionality:

1. From Representation Definition View of the Definitions Palette >
Drag the Tutorial_SmallDefaultButton representation onto your
window > Place it to the left of the Back button.

2. Double-Click the button. The Component Properties Dialog is
invoked.

3. Go to the Events Tab of the Component Properties Dialog. Make
sure that the Event is OnClick.

4. Open the General Methods tree and scroll down the Activate
Method list until you see the Tutorial_AddUpdateButton
SetText_OnClick Method.

* Note : For a detailed explanation of Events - see the ‘How It Works’
section at the end of the Main Menu window exercise.

5. Select the Method > Click the Link button.

6. In the Event combobox > choose the OnDisplay event.

7. Scroll down the Activate Method list until you see the
Tutorial_AddUpdateButtonSetText_OnDisplay Method.

8. Select the Method > Click the Link button.

9. Go to the Style Tab of the Component Properties Dialog.

10. Type ‘Add” into the Text Field.

11. Click OK to come out of the Component Properties Dialog.

Drag the Tutorial_SmallDefaultButton representation onto your
window and place it to the left of the Back button.

Representation
Definition View

1

In the Events Tab, attach the
Tutorial_AddUpdateButtonSetText_OnClick Method to the
OnClick event and the
Tutorial_AddUpdateButtonSetText_OnDisplay Method to the
OnDisplay event.

4

7

3

10
Type ‘Add
into the text
field

Go to the Style Tab and type ‘Add’ into the text field.

Style Tab

9

10

5EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
4. ADDING FIELDS TO THE WINDOW

In this step, you will add Representation Definitions to the window
by dragging fields onto your window from Field Definitions View of
the Definitions Palette. You will then choose the representations
associated with the field from a “Short List”.

Click the Field Definitions View Icon in the Definitions Palette to see
the list of fields defined in the KnowledgeBase.

To add the remaining Representations to your Subapplication, refer to
the table below:

1. Drag the fields in the Window Fields column onto the window,
from the Definitions Palette. The Select Field Representation
Dialog appears.

2. Select the representation in the Representations column, from the
Short List in the Select Field Representation Dialog.

3. Click OK to come out of the dialog. Your representation is added
to the window. It is associated with the field that you dragged from
the Definitions Palette.

Arrange the Position of the Added Representations
Arrange the position of the added representations according to the
image to your right. For more information on control manipulation,
please refer to the IDK Walk-through section of this tutorial.

5. ERROR HANDLING ON THE HOST

Before we see how error handling is performed on the host, we need
to add a couple of variable definitions to our window.

Window Fields Representations

FDPNUM Tutorial_Label_OutputField

FDPNAM Tutorial_Label_InputField

FDDEPT Tutorial_Label_Combobox_Department

FDBDAT Tutorial_Label_DateControl

FDEDAT Tutorial_Label_DateControl

FDPCOM Tutorial_Label_InputField

Click on the Field Definitions View Icon in the Definitions
Palette to see the list of fields defined in the KnowledgeBase.

Field Definition View Icon

Drag fields onto the window, then choose the correct
representation from the Short List.

1

2

3

Arrange the position of the added representations like this.

4

6EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
Add Variable Representations to the Window
In the last exercise, we saw and implemented the usage of the
VariableMode variable (attached to FDMODE field). In this exercise,
we use the VariableFocus variable (attached to JSTFOC field) and
the VariableMessage variable (attached to JSTMSG field) to
perform error handling on the host.

* Note : The VariableMessage variable and JSTMSG field already exist
in your Subapplication - they were brought in by your window
layout

Don’t forget, we still need to add the FDMODE variable to our
Subapplication. It is used by the SetText method to set the value of
the ‘Add ‘and ‘Update’ buttons.

1. Add the Variable Representation Definitions in the table below to
the window by dragging Window Fields onto your window. Then,
choose the Representations associated with the field from the
“Short List” of favorites. Drag the following fields onto your
Subapplication window from Field Definitions View of the
Definitions Palette:

* Note : When you drag these fields onto the window, it will seem as if
nothing has happened, and no representation will appear. This is
because these fields are attached to hidden variable
representations.

2. Make sure that these fields were added to the window: Check that
the fields JSTFOC and FDMODE reside in the list of fields in the
Window Fields Palette. Check that the VariableFocus and
VariableMode variables exist in the list of window components in
the Window Components Palette. (they will have an icon with a
picture of a ghost)

About Host Code Error Handling
In the last exercise, error handling was performed server-side. In this
exercise, let’s look at an example of how error handling can be
performed on the host. To see how we did it, open the PADDPR
program on the host and take a look. Heres how it works:

Window Fields Representations

JSTFOC Tutorial_Variable_Focus

FDMODE Tutorial_Variable_Mode
Drag fields onto the window, then choose the correct
representation from the Short List.

1

Check the contents of the Window Components and Window
Fields palettes to ensure the variable representations have
been added to your Subapplication.

2
2

7EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
Let’s look at the block of code to the right, taken from the program
logic written for the PADDPR Subapplication of the ITUTOR demo.
This example shows how to display a message, and how to set the
focus on a given field.

In this example, "Project Added" was moved to the message field in
the buffer. (You can see MSG2 defined on page 1 of the program
listing.) The Method Tutorial_ErrorFocus_OnDisplay, which
executes at display time, will display the message in your client’s
Dynamic Information Line (DIL) during runtime. The preceding was
done if the project was added successfully.

Otherwise, if the project was not added successfully:

The field name FDBDAT (connected to StartDate on the screen) was
moved to the field JSTFOC, when the window is displayed; and
MSG4 was moved to the DIL (You can see MSG4 defined on page 1
of the program listing.).

* Note : See the ‘How It Works’ section at the end of the exercises for a
detailed explanation of the runtime behavior between client,
server and host.

6. THE “PROJECT #” REPRESENTATION

According to our project requirements, the Project Number controls
must appear on the window if it is accessed in ‘Edit’ mode, but not if
it is accessed in ‘Add’ mode. As you did in the previous exercise, use
the Tutorial_HideShowControlBasedOnMode hide/show Method to
control this interface variation. To do this:

1. Attach the Tutorial_HideShowControlBasedOnMode Method to
the OnDisplay event of both the Static and the Output components.

* Note : Make sure you attach the method to both the Static and Output
components. For further details, see Step 5 of Exercise 3 to
refresh your memory on how this is done.

2. Check the Runtime data flow checkbox in the Manager Tab of the
Static component’s Properties Dialog.

C***

C* Add Record - User Clicked Add Button *

C***

C*

C* Send "Project Added" to DIL

C MOVELMSG2 JSTMSG

C*

C*Error - Start Date > End Date

C ELSE

C MOVEL'FDBDAT' JSTFOC

C MOVELMSG4 JSTMSG

C ENDIF

C*

Sample Code taken from the program logic written for the
PADDPR Subapplication of the ITUTOR application.

Attach the Tutorial_HideShowControlBasedOnMode Method to
the OnDisplay event of both the Static and the Output
components.

1

Check the Runtime data flow checkbox in the Manager Tab of
the Static component.

2

8EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
7. GENERATE RUNTIME AND TRANSFER FILES

Compile the Subapplications into an executable, and transfer the
DDS physical files to the host via the Generate Runtime Wizard. The
Shell programs will not be transferred, since the host code has been
prepackaged for you and already exists in the MYTUTORIAL host
library. To generate a Runtime:

1. From the File menu > choose Generate Runtime... The Generate
Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

* Note : The Only new and modified option allows you to only compile
the Subapplications that were modified. Only the modified DDS
physical file and RPG program of subapplication PADDPR are
FTP’d back to the host, and only they need to be compiled.

3. In the File Transfer screen, specify the following information,
then click Next:

* Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIAL01) as the Target
Library.

Runtime Type: Java and XHTML

Jacada Server
Platforms:

Windows NT(2000) x86

Subapplications to
Include:

All

Subapplications to
Process:

Only new and modified

Transfer files: <Checked>

Host: <YourHostIPAddress>

Login User: <YourUserNameOnHost>

Login Password: <YourPasswordOnHost>

Target Library: MYTUTORIAL

Generate a Runtime in order to compile your SubApplication
into an executable

1

Fill out the File Transfer screen of the Generate Runtime
Wizard

3

9EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIAL01) be the first
library in the Library List entry and include the JACADA
library after your library.

5. Click Finish to come out of the Generate Runtime Wizard, and
commence with the compilation process. The Generating the
Runtime dialog appears.

Look for the message “Runtime was successfully generated” at
the end of the compilation process, this is an indication that all is
well and you can safely go on to the next step.

6. Click Close to come out of the Generating the Runtime dialog.

8. COMPILE DDS AND PROGRAM FILE ON HOST

Verify that the Jacada Library is included in your library list.

Compile the DDS physical file, PADDPR$D and the RPG program
file PADDPR in your MYTUTORIAL library.

9. RUN APPLICATION WITH A JAVA CLIENT

In order to run your Application, you must first verify that the Jacada
monitor is active.

Ensure the Jacada Monitor is Active
To ensure that the Jacada Monitor is active:

1. Type CFGJACMON in the iSeries command line.

2. In the Configure Jacada Monitors screen, make sure that the word
‘Active’ Appears in the Status column to the right of the Jacada
Monitor.

If the Jacada monitor is not active:

Type 1 in the Opt column to start the Jacada Monitor.

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA
Fill out the Host Connection and Application Information
screen of the Generate Runtime Wizard

4

In the Configure Jacada Monitors screen, make sure that the
word ‘Active’ Appears in the Status column to the right of the
Jacada Monitor

2

1
0

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
Run your Application with a JAVA Client
Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

3. Click Finish to come out of the Run Application Wizard. The
Jacada Server is activated and your Default Browser window is
opened to the Jacada <ApplName>.html page.

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your Java client Application.

Navigate to the Add / Edit Projects Window
Navigate to the PADDPR Subapplication by using the diagram
provided for you to the right.

* Note : You can only navigate to this Subapplication in ‘Add’ mode at
this time. This is because the PPROJ Subapplication, from
which you can access this window in ‘Edit’ mode, has not been
built yet. You will build the PPROJ window in the next exercise.
For now, navigate to this window in ‘Add’ mode only. After you
complete the next exercise, navigate to this window in ‘Edit’
mode to see the final product of your efforts in this exercise.

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/
MYTUTOR.html

Run your application through the development environment by
choosing File > Run Application

1

Choose Java as your runtime type in the Run Application
Wizard

2

Navigate to the PADDPR SubApplication Add mode. You will
be able to access the window in Edit mode after completing
Exercise 5.

PADDPR
Add Project

Ad
d

Main Menu
PMENU

1
1

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
The Finished Product
This is what your window should look like when accessed in ‘Add’
mode in the Java client.

This is what your windows should look like when accessed in ‘Edit’
mode in the Java client.

* Note : Remember, you will only be able to access the window in Edit
mode after completing Exercise 5.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes if a message appears.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Add’ mode
in a Java runtime.

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Edit’ mode
in a Java runtime.

1
2

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
10. EXTEND THE HTML CODE TO INCLUDE DATE
CONTROLS

In the XHTML client runtime, it is still possible to improve your
Application’s look and feel after developing your Application in the
IDK. Such improvements are made outside of the IDK and are
manually incorporated into the Jacada Studio Application. This is
done by creating user HTML extensions. During runtime, the Jacada
Server merges these HTML extensions with your runtime
Application. User HTML extensions enable you to incorporate Java
Scripts, VB Scripts and various other HTML features into runtime-
generated XHTMLs.

For the sake of this example, the requirement is that both the Java and
XHTML runtimes have date controls. HTML does not support date
controls, so we have extended the HTML code with a prepackaged
extension. This extension will allow you to implement the date
control globally in the HTML runtime.

FYI: Naming and Placing a User HTML Extension File

It is important to correctly name and position your user HTML
extension file. The file’s name has a direct bearing on the level at
which the extension file is incorporated into the Application.
Extension files can exist on different levels: Subapplication level
extensions take the highest priority and override Application level
extensions.

Application Level - To merge a user extension file with the whole
Application, you must give it the name “appl.html” and save it in the
\JacadaFiles\classes\appls\<applname>\xhtml\user directory. The
extension file is then incorporated into the whole Application. It
effects all Subapplications in the Application.

Subapplication Level - To merge a user extension file with one
specific Subapplication, you must give it the name of the
Subapplication. If the Subapplication’s name is “PADDPR”, then
you must name your extension file “PADDPR.html” and save it in
the Application or library’s user directory. The extension file is then
incorporated only into that one screen.

Place all Java
Scripts here

Place all HTML
extensions here

1
3

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
The Date Control Extension
The javascript file APS.js is used to create the date controls and the
GUI calendar functionality. It is called from the HTML file
appl.html. This file is used as a global extension and it effects all
Subapplications in the Application.

These extension files are included with Jacada Studio for iSeries, and
can be used to create sophisticated GUI date controls in all of your
HTML client runtimes.

To view the prepackaged extension:

1. Go to the directory \JacadaStudio\JacadaFiles\classes
\appls\MYTUTOR\xhtml\user

2. Open the appl.html file in any text editor

To view the prepackaged javascript:

1. Go to the directory \JacadaStudio\JacadaFiles\classes
\appls\MYTUTOR\resources\JScript

2. Open the APS.js file in any text editor to view the code.

* Note : In addition to adding the date controls and the GUI calendar, the
APS.js javascript file also sizes the windows and removes the
up/down scrolling buttons assigned to tables by default.

11. RUN APPLICATION WITH AN XHTML CLIENT

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties by clicking the Next button, when prompted.

3. Click Finish to come out of the Run Application Wizard. The
Jacada Server is activated and your Default Browser window is
opened to the Jacada <ApplName>.html page.

Runtime Type: XHTML

Port Number: 8080

Web Server: Integrated HTTP Service

Application URL: http://localhost:8080/
MYTUTOR-xhtml.html

<html>

<head>

<script src="http://localhost:8080/classes/appls/
ITUTOR/resources/JScript/APS.js">

</script>

<title></title>

</head>

<body onLoad="onLoad_();">

<form name="jacadaform" id="jacadaform">

</form>

<form name="myForm">

<script>

 checkDateControls();

</script>

</form>

</body>

</html

Contents of the appl.html global extension used in the HTML
runtime. Extension calls the APS.js javascript

Run your application with an XHTML client by choosing File >
Run Application in the development environment.

1

Choose XHTML as your runtime type in the Run Application
Wizard

2

1
4

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your HTML client Application.

Navigate to the Add / Edit Projects Window
Navigate to the PADDPR Subapplication. Navigate to the
Subapplication in both Add and Edit mode to see the final product of
your efforts in this exercise.

The Finished Product
This is what your window should look like when accessed in ‘Add’
mode in the HTML client.

This is what your window should look like when accessed in ‘Edit’
mode in the HTML client.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.
or
Use the shortcut Ctrl+C and answer yes to the message that
appears.

3. Close the Jacada Server command window.

4. Close your browser window.

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Add’ mode
in an XHTML runtime.

The final product of your efforts in this exercise. The look of the
PADDPR SubApplication, when accessed through ‘Edit’ mode
in an XHTML runtime.

1
5

Exercise 4 - Jacada Studio For iSeries

How It Works: The Add / Edit Project Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you
ready?

Error Handling On The Host
In the last exercise, error handling was performed server-side. In this exercise, error handling was performed on the host, with a little help from an
IDK Method. To see how this works, open the PADDPR program on the host and take a look. In this example, we run validity checks to make sure
that none of the fields are blank. Heres how it works:

In the IDK:

1. In the IDK, the Method Tutorial_ErrorFocus_OnDisplay, is
attached to all input fields on PADDPR.

* Note : You can double click any of the controls that require input and
go to the Events tab to see this association.

On the Host:

2. The nested IF statements check the valid fields to determine if the
field is blank.

3. If the field is blank:
- The name of the field is moved to the JSTFOC field
- An error message from the “Application Messages” I

specifications is moved to the JSTMSG field.

* Note : For example, if the value of the FDPDES field is equal to
blanks... notice the ELSE statement (towards the bottom of the
code) - the field name FDPDES is moved to the JSTFOC field
and a message is moved to the JSTMSG field.

4. When the RPG program gets to a WRITE statement, the screen is
sent to the Jacada Server with the value of the JSTFOC field and
the JSTMSG field.

On the Jacada Server:

5. All OnDisplay Methods are executed

6. The ErrorFocus_OnDisplay Method gets the name of the current control and compares it to the value of the JSTFOC field (Variable
Representation name is VariableFocus).

7. If the value of the JSTFOC field matches the name of the current control, the Method:
- Puts the focus on the current control
- Sets the control’s background color to red
- Sends the Application message in the JSTMSG field to the Dynamic Information Line (DIL).

* Note : All Subapplications with required input have a variable representation called VariableFocus which is attached to the JSTFOC field in the buffer
for the error handling to work.

Set focus on control
Set control background to red
Move value of JSTMSG to DIL

RPG Code
JSTFOC = FNAM
JSTMSG = error

Window Components
VariableFocus = FNAM

VariableMessage = error

Window Fields
JSTFOC = FNAM
JSTMSG = error

ErrorFocus_OnDisplay
Method

Client

Server

Host

If name of control = value of JSTFOC

Update

Update

Update

7

6

4

1
6

EXERCISE 4 - JACADA STUDIO FOR ISERIES
Create the Add / Edit Project Window
Disabling the ‘Name’ Textbox in Edit Mode
In this project, the requirement is that the textbox containing the
project name be disabled in Edit mode. To do this, the
Tutorial_DisableControlBasedOnMode_OnDisplay Method was
pre-attached to the OnDisplay event of the textbox component of the
representation used to create the name field. This Method checks the
value of the VariableMode variable (attached to the FDMODE field).
If the variable’s value is ‘EDIT’, the textbox is disabled. If the
variable’s value is anything other than ‘EDIT’, the textbox is enabled.
To view this Method:

1. Double-click the textbox next to the ‘Name’ label on your
window. The Component Properties Dialog appears.

2. Go to the Events Tab.

3. Double-click on the Tutorial_DisableControlBasedOnMode
_OnDisplay Method. Double-click the textbox next to the ‘Name’ label on your

window. Go to the Events Tab and double click on the
Tutorial_DisableControlBasedOnMode_OnDisplay Method

3

1

Exercise 5 - Jacada Studio for iSeries

Create the Work with Projects Window

Objectives:
• To provide an exercise that replicates the Work with Projects window in the pre-packaged iTutor application

• To build a window that illustrates the graphical alternative to Subfile behavior through the use of a graphical table control

• To provide a brief explanation on how to construct and manipulate a table within the IDK

• To provide a capability to re-sequence or reload a table based on a Combobox selection of logical sort sequences

• To show the use of previously used fields with new short-list representations and the difference in use within a table control

• To expose the developer to the use of palette filters to improve usability of the IDK

• To go through the process of creating a new field and assigning an appropriate representation to that field when it is added to the display

• To add several lines of RPG code to implement one of the Jacada Studio table level APIs

• To differentiate Jacada Studio for iSeries table processing from iSeries green-screen Subfile processing

• To explain the different runtime behaviors of record selection between the Java and XHTML clients

In this exercise, you create the Work with Projects window of the ITUTOR Application. Your MYTUTOR Application should already contain
seven of the eight Subapplications in the ITUTOR demo, four that were prepackaged for you and the Main Menu, Add/Edit Resource and Add/
Edit Projects windows that you created in the previous exercises. In this exercise, we will create a new field that will be used to output a count of
the total records in the table. The table record count is a value that is automatically maintained by the Jacada table API architecture. This is a
handy feature that has no equivalent Subfile instruction in the green-screen world. The API document completely describes all the API modifiers
and their implementations.

Tutorial Exercise
Overview IDK Walk-Through

Your First
Application

Exercise
Main Menu
Exercise

Add / Edit
Resource
Exercise

Add / Edit Project
Exercise

Work With
Projects Exercise

2EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
The major steps to this exercise are:

1. Window Design Specifications
2. Create the PPROJ Subapplication
3. Add the ‘Sort by’ Combobox to your Window
4. Add a Table to your Window
5. Add Representations to the Table
6. Create a Field in the KnowledgeBase
7. Associate Representation with Field and Create a

Short List
8. Generate Runtime and Transfer Files
9. Modify The RPG Program
10. Compile DDS and Program File on Host
11. Run Application with a Java Client
12. Run Application with an XHTML Client

1. WINDOW DESIGN SPECIFICATIONS

First, you must define the differences in the Subapplication’s
interface, between when it is run with a Java client and when it is run
with an XHTML client. The differences are:

In the Java Runtime:

1. There is a Right Mouse Button menu in the table. Via this menu,
user can perform actions on table rows.

In the XHTML Runtime:

1. There is an Action Column in the table. Via this column, user can
perform actions on table rows.

2. There is a ‘Submit’ Button, to the left of the ‘Back’ button in the
bottom right corner of the window.

In this Subapplication, you must take into account limitations
stemming from the use of multiple client languages. For the sake of
this example, the requirement is that actions be performed on table
records in both the Java and XHTML runtimes. Since the HTML
client is a browser window and browsers have their own right-mouse-
button menus, it is not recommended to override the right-mouse-
button browser functionality. In the HTML runtime you will create
an action column, similar in functionality to the action columns that
you are used to seeing on the iSeries. In the Java runtime, you will
exploit Java’s ability to allow for a right-mouse-button menu within
the table.

The final product of your efforts in this exercise. The look and
behavior of the PPROJ Subapplication, in a Java Runtime.

Right-mouse-button
menu

1

The final product of your efforts in this exercise. The look and
behavior of the PPROJ Subapplication, in an XHTML Runtime.

‘Submit’ Button

Action
Column

1

2

3EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
The native behavior of the Java runtime is to move to the next
window as soon as an action is selected from the right-mouse-button
menu. The native behavior of the HTML runtime is to move to the
next window, only when given the command to “Submit”. Therefore,
a “Submit” button will only be needed in the HTML runtime.

2. CREATE THE PPROJ SUBAPPLICATION

To create the PPROJ Subapplication, you must first open both the
Jacada Studio Interface Development Kit (IDK) and the MYTUTOR
Application.

The New Subapplication Wizard
In this step, you create the PPROJ Subapplication in your
MYTUTOR Application. In this exercise, you apply a prebuilt
Window Layout called Tutorial_LayoutforPPROJ to your
Subapplication.

1. From the Subapplication Menu > New ... The New
Subapplication Wizard is invoked.

2. In the New Subapplication Wizard, specify the following
Subapplication properties:

* Note : All other Subapplications in the ITUTOR Application
containing tables were built using the
Tutorial_BasicLayoutWithTable window layout. The window
layout for PPROJ is special in that it contains list controls used
to create the right-mouse-button menu functionality of the Java
runtime.

3. Click Finish to exit the New Subapplication Wizard.

Elements added to the Window by the Tutorial_
LayoutforPPROJ Window Layout
Did you notice the various elements that were brought into your
Application when you selected the Tutorial_LayoutforPPROJ
Window Layout in the New Subapplication Wizard?

Subapplication Name: PPROJ

Popup Window: Unchecked

Window Layout: Tutorial_LayoutforPPROJ

Subapplication
Description: None

In the Select Window Layout step of the New Subapplication
Wizard, choose the Tutorial_LayoutforPPROJ Window Layout.

2

Elements added to the window by the
Tutorial_LayoutforPPROJ Window Layout

Link Control

Image

Frame

Image with Text

‘Back’
Button

Frame
Image

‘Submit
Button

‘Main Menu’
Button

‘New Project’
Button

4EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
Checking the Contents of the Window
Check the contents of the Window Components Palette to see the
GUI components brought in by the Window Layout.

Check the contents of the Window Fields Palette to see the Window
Fields brought in by the Window Layout.

* Note : Notice that the main difference between the previous window
layouts and this one is in the number of window fields and
variable window components. This window layout has fields
and window components that were not present in the other
window layouts. In order to perform actions on tables, table
columns and table rows, a broader selection of fields and
variable window components is needed.

3. ADD THE ‘SORT BY’ COMBOBOX TO YOUR
WINDOW

In this step, you will add the Sort by: combobox definition to the
window. The Sort by: combobox definition will allow the user to sort
records in the table according to preset criteria.

To Add the “Sort by” Combobox

1. Go to Representation Definition view of the Definitions Palette:

2. Drag the Tutorial_Label_SortBy_ComboBox_GoButton
representation onto your window.

* Note : This particular combobox is fully functional because it has been
preformatted in the KnowledgeBase, and code to support it’s
functionality exists in the prepackaged MYTUTORIAL host
library. In the optional exercises at the end of this section, you
will create another criterion for sorting, format it into this
combobox and write the host code to support it.

4. ADD A TABLE TO YOUR WINDOW

To add the table to your Subapplication, from Representation
Definitions view of the Definitions Palette:

1. Drag the representation Tutorial_Table onto your window. The
Table Component Dialog appears.

2. Type TPROJ in the Record name field of the Table Component
Dialog.

3. Click OK to exit the Table Component Dialog.

4. Select the table representation in the window, resize it by
stretching the table via the control handles at its side.

Drag the Tutorial_FunctionKey representation onto your
window from the Definitions Palette.

1

2

Drag the representation Tutorial_Table onto your window. Type
‘TPROJ’ in the Record name field.

1

2

3

Select the table and use the control handles at its sides to
stretch it until it looks like this diagram

4

5EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
5. ADD REPRESENTATIONS TO THE TABLE

In this step, you will first use the Show filter to select a
representation from the full list of representations in the Select Field
Representation dialog that pops up when you drag a field onto the
window. You will then add the remaining Representation Definitions
to the table by dragging fields onto your table from Field Definition
View of the Definitions Palette.

Add a Field to the Table and Use the Show Filter to
Find the Right Representation
1. Click on Field Definition View of the Definitions Palette.

2. Drag the JSTSEL field onto the table. The Select Field
Representation Dialog appears.

* Note : Make sure you drag the field onto the TABLE and not the
window.

3. Choose the _Tutorial filter from the Show filter combobox in the
Select Field Representation dialog. Only representations with the
prefix ‘Tutorial’ are shown in the list of representations.

FYI: The Show Filter

The Show filter can be found preceding lists of representation
definitions that exist in the KnowledgeBase. The purpose of the Show
filter is to allow the developer to view Representation Definitions
according to specific criteria. For example, only representations
connected to a certain field or representations with a certain prefix
can be viewed in the list. Using this filter shortens the list of
representations and allows the developer to focus on the
representations that he is working on. The Show filter criteria are
fully customizable by the developer and can be set to include as
many criteria options as you choose. The Show filter exists in three
places in the IDK interface:

1. Representation Definitions View of the Definitions Palette
in Design View

2. The Select Field Representation dialog in Design View

3. The Representation Definitions Pane of the KnowledgeBase
 interface (Lower Left Pane)

* Note : Use the button with the picture of an owl (on your standard toolbar) to access the KnowledgeBase.

Representation
Definitions
Pane in the KB

2

3

1

Drag the JSTSEL field onto the table. Choose the -Tutorial filter
from the Show filter combobox.

2

3

Field Definitions
View

1

6EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
4. Select the Tutorial_PPROJ_Table_ActionColumn
representation from the list of representations definitions.

5. Click OK to exit the dialog. Your representation is added to the
table. It is associated with the field that you dragged from the
Definitions Palette.

Add Remaining Representations to the Table
Add the following Representation Definitions to the table by
dragging fields onto your table from Field Definition View of the
Definitions Palette. Choose the representations associated with the
field from the “Short List” of favorites.

The place in the table onto which you drag the representations is not
important. Columns will be created in the order in which the
representations are dragged onto the table. If the column order is not
to your liking, you will learn how to change it later in this step. To
add the remaining Representations to your Subapplication, refer to
the table below:

* Note : In the last exercise, we used these same data fields. We chose
short list representations appropriate for displaying a label to the
left of the field control. In this exercise, we are using the same
fields with short list representations suitable for a table. In this
case, you will see the label at the top of the column.

Testing the Table’s Functionality
Because of the amount of representations added to the table, the
columns in the table now exceed the table length. In Design View,
you can not see all of the columns added to the table. To see all of the
columns added to the table and verify the functionality of the
horizontal scrollbar:

Window Fields Representations

FDPNUM Tutorial_ColumnLabel_OutputField

FDPNAM Tutorial_ColumnLabel_OutputField

FDDEPT Tutorial_ColumnLabel_OutputField

FDBDAT Tutorial_ColumnLabel_OutputField

FDEDAT Tutorial_ColumnLabel_OutputField

FDPCOM Tutorial_ColumnLabel_OutputField

Select the Tutorial_PPROJ_Table_ActionColumn
representation from the list of representations definitions. Click
OK to add the representation to your table.

4

5

As Fields are dragged onto the table, the table headers
become populated with the label definitions assigned to the
representations.

7EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
1. Go to Test View by clicking the Test View Icon in the
Standard Toolbar.

2. Click and drag the Table Scrollbar to scroll through the table
columns and check that the correct columns were added in the
correct order. You can also click the arrow buttons to the left and
right of your scrollbar to scroll the table in each direction.

Manipulation of Table Columns
In Test View you can manipulate table columns. You can change the
order in which the different columns are placed, and you can also
change the width of each column.

To reorder table columns:

1. Select a Table Column by clicking on its header.

2. In Test View > Hold down the Shift key on your keyboard.

3. Drag the table column to the left or right to move the column to its
new location.

To change the width of a table column:

1. In Test View > Place your Cursor on the line that divides between
two table headers. The cursors form.will change.

2. Drag the line between the table columns to the left or right to
resize the adjoining columns.

6. CREATE A FIELD IN THE KNOWLEDGEBASE

In this step, we create a field that will be used to output a count of the
total records in the table. We will then define the field’s properties.
We will define this field globally, in the KnowledgeBase.

To create the field:

1. Click the KnowledgeBase icon in the Standard Toolbar.
The KnowledgeBase window opens.

2. From the Define menu > choose New... The New Field Definition
dialog appears.

3. Type FDTOTL into the Field name area of the New Field
Definition dialog.

4. Click the OK button to exit the New Field Definition dialog. The
new FDTOTL field is added to the list of fields in the Field
Definitions Pane. The Field Definition Properties Pane becomes
active.

In Test View you can scroll through the table, resize and reorder
table columns.

Shift+drag header
to reorder

Click scroll arrows to scroll to the left / right

Click and
drag scrollbar

Drag line
to resize

Access the KnowledgeBase Interface by clicking the icon in the
Standard Toolbar

1 2

From the Define menu > choose New... > Type FDTOTL into
the Field name area of the New Field Definition dialog > Click
the OK button to exit the dialog.

3

4

8EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
To define the field’s properties:

1. Select the FDTOTL field in the Field Definitions Pane.

2. Drag the interface divider downward until you can see the three
types of Default Data Flow (Output, Input, Both) in the Properties
Tab of the Field Definition Properties Pane.

In the Properties Tab of the Field Definition Properties Pane:

3. Set Data Type to Numeric

4. Set Data Size to 5

5. Set Decimal Positions to 0

6. Set Default Data Flow to Output

7. Click the Representation Information Tab in the Field Definition
Properties Pane.

8. Type Total Records in Table into the Label field.

9. Click the Update button to update the field’s properties in the
KnowledgeBase.

10. Save your KnowledgeBase settings by clicking the Save

button in the KnowledgeBase interface.

11. To exit the KnowledgeBase:

From the File menu > choose Exit.

or

Click the Close button on the upper right corner of the window.

Set field properties in the Properties Tab of the Field Definition
Properties Pane.

3

Drag to resize

1

2

Field
Definition
Properties
Pane

Properties Tab

4
5

6

Type ‘Total Records in Table’ into the Label field in the
Representation Information Tab of the Field Definition
Properties Pane.

Field
Definition
Properties
Pane

Representation Information Tab 7

8
9

Field
Definition
Properties
Pane

Save
Button

10

To exit the KnowledgeBase, choose ‘Exit’ from the File menu
or click the Close button on the upper right corner of the
window

11
 Close
 Button

11

9EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
7. Associate Representation with Field and Create
a Short List
In this step, you add the new FDTOTL field to the window. You will
then associate a representation definition with this field, and put the
chosen Representation Definition in the short list of favorite
representations for this field. These changes will be saved to the
KnowledgeBase, and will allow you to reuse this field, with its new
short list of favorites, throughout the application. Doing this will
ensure that whenever this field is dragged onto a window, the
associated Representation Definition will show up in the field’s short
list. If the Representation Definition is chosen from the fields short
list, it will be automatically connected to that field in the buffer.

Add FDTOTL to the Window
To add the new field that you created to the window:

1. Drag FDTOTL onto your Window (not Table) from Field
Definitions View of the Definitions Palette. Drag the field onto the
area under the table. The Select Field Representation dialog
appears.

2. Choose the _Tutorial filter from the Show filter combobox in the
Select Field Representation dialog. Only representations with the
prefix ‘Tutorial’ are shown in the list of representations.

3. Select the Tutorial_Label_OutputField representation from the
list of representations definitions.

4. Check the Add to short list checkbox.

5. Click OK to exit the dialog. Your representation is added to the
window. It is now associated with the field that you dragged from
the Definitions Palette.

6. Click the Apply Design Changes button in your Standard Toolbar
to apply the changes of your design.

What your Window Should Look Like
This is what your windows should look like at the end of the last step.
Notice that the label of the representation that you added,
automatically received the text ‘Total Records in Table’. If the
representation is not placed correctly, select the representation
components and place them according to the diagram to the right.
You are now ready to generate a runtime.

Drag FDTOTL onto the window. Select
Tutorial_Label_OutputField as the associated representation
definition and check the ‘Add to short list’ checkbox.

1

2

3

4

5

What your Window Should Look Like at the end of the last
step.

1
0

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
8. GENERATE RUNTIME AND TRANSFER FILES

To generate a Runtime and transfer the files to host:

1. From the File menu > choose Generate Runtime... The Generate
Runtime Wizard is invoked.

2. In the Generate Runtime Wizard, click Next to accept the
following default settings:

3. In the File Transfer screen, specify the following information,
then click Next:

* Note : If you are working in a multi-evaluator environment, specify
your respective Library (i.e. TUTORIAL01) as the Target
Library.

4. In the Specify Host Connection and Application Information
screen, specify the following information, then Click Next:

* Note : If you are working in a multi-evaluator environment, remember
to have your respective Library (i.e. TUTORIAL01) be the first
library in the Library List entry and include the JACADA
library after your library.

Runtime Type: Java and XHTML

Jacada Server
Platforms: Windows NT(2000) x86

Subapplications to
include: All

Subapplications to
Process: Only new and modified

Transfer files: <Checked>

Host: <YourHostIPAddress>

Login User: <YourUserNameOnHost>

Login Password: <YourPasswordOnHost>

Target Library: MYTUTORIAL

Host: <YourHostIPAddress>

Port Number: 7666

Initial Program: PMENU

Library List: MYTUTORIAL JACADA

Generate a Runtime in order to compile your Subapplication
into an executable

Fill out the File Transfer screen of the Generate Runtime
Wizard

3

Fill out the Host Connection and Application Information
screen of the Generate Runtime Wizard

4

1
1

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
5. Click Finish to exit the Generate Runtime Wizard, and commence
with the compilation process. The Generating the Runtime dialog
appears.

6. Wait for the Runtime Generation process to come to an end.

7. Click Close to exit the Generating the Runtime dialog.

Files Created By the Generate Runtime Process on
the Development PC
Subapplications containing tables contain two separate records: a
window record and a table record. Look in the JacadaStudio\appls\
MYTUTOR\gds directory - 7 files were created on the development
PC for this Subapplication:

1. RPG_OPM.PPROJ$D - The Window Record DDS physical file

2. RPG_OPM.PPROJ#D - The Table Record DDS physical file

3. RPG_OPM.PPROJ$P - The Parameter List Copybook for the
 Window Record

4. RPG_OPM.PPROJ#P - The Parameter List Copybook for the
 Table Record

5. RPG_OPM.PPROJ$F - The File Specification Copybook for the
 Window Record

6. RPG_OPM.PPROJ#F - The File Specification Copybook for the
 Table Record

* Note : The dollar sign ($) is used in the name of the files generated for
window definitions. The pound sign (#) is used in the name of
the files generated for table definitions.

7. ShellProgram.RPG_OPM.PPROJ - The Shell Program.

* Note : Only one Shell Program is generated per Subapplication.

Libraries Objects and Members Created by the
Generate Runtime Process
When you choose to transfer the files created by the Runtime
Generation process to the host by checking the Transfer files
checkbox in the Transfer Files screen of the Generate Runtime
Wizard, the library structure in the diagram to the right is created on
the host in the Target Library that you specified. Because the RPG
code of the PPROJ subapplication was prepackaged for you, the shell
program is the only file that is not transferred.

The files created on the
development PC as a result
of the Runtime Generation
Process

The libraries, objects and members of the PPROJ window on
the iSeries.

1
2

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
9. MODIFY THE RPG PROGRAM

In this section we will add RPG code to retrieve a count of the
records in the table and move that value into the field we created
earlier (FDTOTL) in order for it to be displayed. The Jacada Studio
table management API automatically maintains a table record
counter. In order to retrieve this counter, we will insert a small piece
of RPG code that will set the API Modifier Field (GDSMOD) to a
value of "GDSGL" (get line), and then execute a READ to the table
record. The READ will retrieve the current count of table records and
place that value in an API field called GDSEC. From there we'll
move that value to the FDTOTL window field. The WRITE
instruction that actually sends the window is already in place.

* Note : For a full description of all the API fields and their uses, please
refer to the API document.

In the screen-shot to the right, lines 87.01 through 87.04 were added
to the prepackaged PRG code.

Manually insert the following lines of code before line 88 in the
prepackaged PRG program. Line 88 contains the comment “Write
and Display Window”

10. COMPILE DDS AND PROGRAM FILE ON HOST

In our previous exercises all the window data was defined in a single
Physical File DDS member and was managed with a single Special
File. Table processing brings another dimension to the development
process. Windows that implement Tables are conceptually similar to
Display Files that implement Subfiles. The Window itself can be
related to a Subfile Control Record Format while the Table portion
can be related to a Subfile Record Format. Just like I/O to a Subfile
Record Format takes place in local program memory on the host,
Table I/O is also a local memory operation. Similarly, I/O to the sub-
application Window that contains the Table actually gets sent to the
client for display, just like I/O to a Subfile Control Record Format.

In order to differentiate between Table I/O and Window I/O, Jacada
Studio generates separate Physical File DDS members and Special
File definitions for the Window record and the Table record. This
separation at the file level instead of a format level provides some
very advanced flexibility in determining where and how a table can
be loaded at the host. (Advance table management is not discussed in
this tutorial.)

The modified RPG program with the added lines of code.

C* Get Record Count in Table

C MOVE GDSGL GDSMOD

C READ TPROJB 99

C MOVE GDSEC FDTOTL

1
3

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
As you compile the files and program on the host, remember that two
Physical File DDS members must be compiled because there are two
pieces to the display. Also remember to add the JACADA library to
your library list.

Compile the DDS physical files PPROJ$D and PPROJ#D as well as
the RPG program file PPROJ in your MYTUTORIAL library.

11. RUN APPLICATION WITH A JAVA CLIENT

In order to run your Application, you must first verify that the Jacada
monitor is active. Only then can you run your Application.

Run your Application with a JAVA Client
Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

3. Click Finish to exit the Run Application Wizard. The Jacada
Server is activated and your Default Browser window is opened to
the Jacada MYTUTOR.html page.

4. Type your iSeries Username and Password.

5. Click the OK button.

Navigate to the Work with Projects Window
Navigate to the PPROJ Subapplication by using the diagram
provided for you to the right.

* Note : Now that this window is built, you can choose the Edit Project
option from the action column to navigate to the Add/Edit
Projects window (PADDPR) in Edit mode.

Runtime Type: Java

Web Server: Integrated HTTP Service

Application URL: http://localost:8080/
MYTUTOR.html

Run your Application through the development environment by
choosing File > Run Application

1

Navigate to the PPROJ Subapplication and right-click on the
table rows to see the menu options.

PPROJ
Work with Projects

PADDPR
Add / Edit Project

PASSI
Work with Assignments

Add

Edit

Main Menu
PMENU

1
4

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
What your Window Should Look Like in Java
This is what your windows should look like in the Java client.In the
Subapplication, right-click on table rows to invoke the selection
options. Select the options to invoke the actions associated with
them.

Close the Jacada Server
When you are done running your Application

1. Exit the Application and end your host session by navigating back
to the Main Menu window with the ‘Back’ button and clicking the
‘Exit Application’ button in the Main Menu window.

2. Type quit in the Jacada Server command window to close the
Jacada Server.

3. Type exit in the Jacada Server command window to close the
Jacada Server command window.

4. Close your browser window.

12. RUN APPLICATION WITH AN XHTML CLIENT

Run the executable created during the Runtime Generation process
from within the development environment:

1. From the File menu > choose Run Application... The Run
Application Wizard appears.

2. In the Run Application Wizard, agree to the default Runtime
properties, by clicking the Next button, when prompted for:

3. Click Finish to exit the Run Application Wizard. The Jacada
Server is activated and your Default Browser window is opened to
the Jacada MYTUTOR-xhtml.html page.

4. Type your iSeries Username and Password into the appropriate
fields.

5. Click the OK button to run your HTML client Application.

6. Navigate to the Work with Projects Window.

Runtime Type: XHTML

Port Number: 8080

Web Server: Integrated HTTP Service

Application URL: http://localost:8080/
MYTUTOR-xhtml.html

The final product of your efforts in this exercise. The look and
behavior of the PPROJ Subapplication, in a Java Runtime.

Run your Application through the development environment by
choosing File > Run Application

1

1
5

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
What your Window Should Look Like in HTML
This is what your windows should look like in the HTML client.In
the Subapplication, click the Action Column in the record row you
wish to select. Select the option to invoke the action.

The final product of your efforts in this exercise. The look and
behavior of the PPROJ Subapplication, in an XHTML Runtime.

1
6

Exercise 5 - Jacada Studio For iSeries

How It Works: The Work with Projects Window

If you feel comfortable with the level of detail provided in this exercise, feel free to skip this section and go on to the next exercise. If you’d like
to find out a bit more about how it all works, keep reading. In this section you learn about how everything comes together during runtime. Are you
ready?

The ‘Submit’ Button
A “Submit” button was added to the Subapplication by the window
layout. For the sake of this example, we have created a method that
shows or hides the “Submit” button according to the client type. In
this step, you see how the “Submit” button’s functionality was
controlled in such a way, that will allow the button to only be shown
in the HTML runtime.

To see how this was done:

1. Double-Click the Submit button on your Subapplication. The
Component Properties Dialog appears.

2. Go to the Events Tab of the Component Properties Dialog.

3. In the Event combobox > choose the OnDisplay event.

4. Double click the Tutorial_HideShowControlBasedOn
RuntimePlatform method.

* Note : This is a very simple method that checks the value of the
SUV_RTFlag “shared user variable” (variable from variable
pool shared by both client and server). If the value of this
variable equals the string “Java”, this button is hidden.

5. Click OK to exit the Component Properties Dialog.

Actions Performed on Table Records
The requirement is that for each table record, three action options be
available during runtime. Since this table consists of a list of projects
and their associated data, the possible actions for table records in this
table are:

Work with Assignments Takes you to the ‘Work with
Assignments’ window

Edit Project Takes you to the ‘Add/Edit
Projects’ window

Delete Project Deletes table record

Double Click the Submit button to open the Component
Properties Dialog.

1

The Tutorial_HideShowControlBasedOnRuntimePlatform
method.

1
7

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
Table MenuOption Component in the Java Runtime
To exploit the ability of the Java client language to allow for a right-
mouse-button menu within the table, the generic MenuOptionTable
representation was used to create a Menu with three Menu Items.
Unknowingly, you have already added these items to the
Subapplication through the Tutorial_LayoutforPPROJ window
layout.

Action Column in the XHTML Runtime
In the XHTML runtime, the Action Column is the first column that
you see in the table. The Tutorial_TableVariable_Action
representation used to create this action column consists of two
window components: A Static (text) component used to display the
text on the column header and a Combobox component used to
display the action options available to the user. During runtime, a
combobox will appear next to each record in the table. It will provide
the user with a pull-down menu, from which he will choose an action
that will be performed on the associated table record when the
window is submitted.This representation is connected to a field
called JSTSEL, through which data will be transferred to and from
the host during runtime.

* Note : This particular combobox is fully functional because it has been
preformatted in the KnowledgeBase, and code to support its
functionality exists in the prepackaged MYTUTORIAL host
library. In the optional exercises at the end of this section, you
will create a combobox option, format its host and window
values and write the host code to support it.

FYI: The MenuOption and MenuOptionTable Window Components

The MenuOption component is a standard generic component that ships with the default Jacada Studio KnowledgeBase (look for it in the
Window Definitions Palette). When dragged onto the window or table, it creates a right-mouse-button menu through which the user can
access the actions defined in its component properties dialog. It also creates a Menu Item in a Menu (that you specify) on the
Subapplication Menu Bar. In the default Jacada Studio KnowledgeBase there are two representations that create right-mouse-button
functionality: MenuOption and MenuOptionTable. The First handles data flow through fields defined in the Window records buffer. The
latter handles data flow through fields defined in the table records buffer.

* Note : Remember that a Subapplication with a table consists of two records: The window record and the table record. We will discuss the
implications of this later in the Generate Runtime step.

The MenuOption
Representations

A Menu with
Menu Items in
the
Subapplication
menu Bar

In Design View > Click on the ‘List’ Menu > select and click the
Edit Project menu item

1
8

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
Because the table actions available through the Action Column will
be accessible in the Java runtime via the MenuOption component, we
will hide the action column in the Java runtime to avoid redundancy.
In this step, you will be introduced to the KnowledgeBase method
used to control the appearance of the Action Column according to the
chosen runtime platform. This method hides the Action Column in
the Java runtime.

View the XHTML Action Column Combobox in Test View

To see the Action Column Combobox in Test View:

1. Go to Test View.

2. Click the area UNDER the table header with the title - ‘Action’.

View the XHTML Action Column Properties

In order to pass values to the host during runtime, the combobox
component of the Tutorial_TableVariable_Action representation
used to create this action column has already been connected to the
JSTSEL buffer field. Since the combobox component sits in a table,
we cannot click the representation and see the associated field
selected in the Window Fields Palette (we only see information
associated with the selected table). Therefore, to view the connection
between the combobox component and the buffer field:

1. Go to Design View.

2. Double-click the first record row in the area UNDER the table
header with the title - ‘Action’. The Combobox Component
Properties Dialog appears.

* Note : Make sure that the component properties dialog says
‘Combobox Component’ in the header and not ‘Static
Component’. If it says ‘Static Component’, this means that you
double clicked the header and not the combobox. Cancel out of
the dialog and try again.

3. In the Combobox Component Properties Dialog > go to the Buffer
Tab. Notice the JSTSEL buffer field attached to the combobox.

In Test View, click the area UNDER the table header with the title
- ‘Action’ to see the Action Column Combobox.

2

In Design View, double-click the area UNDER the table header
with the title - ‘Action’ to access the combobox component
properties dialog.

2

Go to the Buffer Tab of the Combobox Component Properties
Dialog to view the connection between this component and the
buffer field associated with it.

3

1
9

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
Showing and Hiding the XHTML Action Column
According to Runtime Platform
In order to hide the Action Column in the XHTML runtime, a method
called Tutorial_HideShowColumnBasedOnRuntimePlatform was
attached to the OnDisplay event of the Static (text) component of the
representation used to create the Action Column. This method checks
the value of a variable that is populated when the Application is
launched. If the value of the variable equals Java, the column is hidden. If
the value of the variable equals XHTML, the column is shown. To view
the association between the column and the method:

1. Double-click the Action Column Header. The Static Component
Properties Dialog appears.

2. Go to the Events Tab.

3. View the Tutorial_HideShowColumnBasedOnRuntimePlatform
method attached to the OnDisplay event of the static component.

* Note : Notice that the method was attached to the column header (Static
component) and not the combobox component.

In Both Cases:

The RPG code loops through the table and processes each table entry
according to the value set by the user.

Double-click the Action Column header.

Double-click the
Action column’s
header

Go to the Events Tab of the Static Component Properties Dialog
to view the method attached to the Static component’s
OnDisplay event.

2
0

Exercise 5 - Studio for iSeries, Jacada

Optional Exercises: Let’s Break it Down - PPROJ

If you’re feeling like you need to break it down some more, how about adding a sort option to the ‘Sort by’ combobox. In this section you will
learn all of the steps necessary to sort the table records by project name. You will create a combobox option, format it’s host and window values
in the IDK and write the host code to support it. Are you ready? Well, what are you waiting for?

The major steps to this exercise are:

1. Add a Value to the ‘Sort by’ Combobox
2. Associate Screen and Window Values
3. Generate a Runtime
4. Create Fspec and Modify the RPG Program
5. Compile Host Code and Run Application

1. ADD A VALUE TO THE ‘SORT BY’ COMBOBOX

1. Go to Design View.

2. Double-click the combobox component of the ‘Sort by’
representation. The Combobox Component Properties Dialog
appears.

3. Go to the Format Tab in the Component Properties Dialog.

4. Click the Format Button. The Format - Screen and Window
Values Connection Dialog appears.

In the Format - Screen and Window Values Connection Dialog:

5. Identify the Screen and Window areas of the dialog. See the image
diagram to the right for help identifying these areas.

* Note : You will define the value passed to the host in the Screen area.
You will define the string that appears in the combobox during
runtime in the Window area.

The final look of the Representation that you will build in this
exercise.

Go to the Format Tab in the combobox component’s properties
dialog and click the Format Button.

3

4

Screen Area Window Area

Identify the Screen and Window areas of the dialog.

5

2
1

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
6. In the Connections area > select the Edit radio button

7. Type ‘NAME’ into the name field in the Screen Area of the
dialog,.

8. Click the Add button to add the value to the values list in the
Screen Area.

9. Type ‘Project Name’ into the name field in the Window Area of
the dialog,.

10. Click the Add button to add the value to the values list in the
Window Area.

2. ASSOCIATE SCREEN AND WINDOW VALUES

1. Select the NAME value from the values list in the Screen Area
and the Project Name string from the values list in the Window
Area.

2. Click the Connect button in the Connections Area.

3. Click the OK button to exit the Format - Screen and Window
Values Connection Dialog.

View the Connection Between Screen and Window
Values
1. In the Connections area > select the Show radio button.

2. Select any of the values in either of the values lists to see their
associated counterparts.

Select the Edit radio button
in the Connections area

6

Type ‘NAME’ into the name
field in the Screen Area of
the dialog and Click the
Add Button

Screen Area
Values List

7
8

Type ‘Project Name’ into
the name field in the
Window Area of the dialog
and Click the Add Button

Window Area
Values List

10
9

Select a window value from the window value list and its
corresponding screen value from the screen value list > click the
Connect button to associate the two values during runtime.

Connect
Button

Edit
Connection

1 12

3

2
2

EXERCISE 5 - JACADA STUDIO FOR ISERIES
Create the Work with Projects Window
3. GENERATE A RUNTIME

In the IDK, Generate a Runtime to compile the Application,
transfer only new and modified files to the host.

4. CREATE FSPEC AND MODIFY THE RPG PROGRAM

In order to add make the Project Name sorting option functional, the
screen values formatted into the combobox must be supported by the
RPG code and an F spec must be created. Perform the following steps
on the host machine to make the Project Name sorting option
functional. Use the code samples in the column to the right to guide
you through the procedure.

1. Add an F spec for the LPROJEC4 logical file sorted by Project
Name to the RPG program. On the continuation line of the F spec,
rename record PROR in column 54 to PROR4.

2. In the RPG program PPROJ, add IF logic after the DO loop to
check the sort field (FDSORT) for the NAME value that you
formatted into the combobox > then call the LODLS3 subroutine
(LODLS3 subroutine will be created in the next step).

3. Add the LODLS3 subroutine to your RPG program by copying
the LODLST subroutine and pasting it after the LODLS2
subroutine.

4. In the LODLS3 subroutine, change SETLLPROR to
SETLLPROR4. Change PROR to PROR4.

5. COMPILE HOST CODE AND RUN APPLICATION

You’re all done! So you want to run your Application? Its easy, just:

1. On the host machine, Compile the PPROJ RPG program.

2. Make sure the Jacada Monitor is Active.

3. From the IDK, Run the Application.

Congratulations!

FLPROJEC4IF E K DISK

F PROR KRENAMEPROR4

Add an F spec for the LPROJEC4 logical file sorted by Project
Name. Rename record PROR to PROR4.

1

C FDSORT IFEQ 'NAME'

C EXSR LODLS3

C ENDIF

Add IF logic after the DO loop to check the FDSORT field for
the NAME value and call the LODLS3 subroutine

2

C *LOVAL SETLLPROR

C READ PROR 88

The LODLST subroutine that must be copied in order to create
the LODLS3 subroutine.

3

C *LOVAL SETLLPROR4

C READ PROR4 88

In the LODLS3 subroutine, change SETLLPROR to
SETLLPROR4. Change PROR to PROR4.

4

	Part IV - Exercises
	Tutorial Exercise Overview
	1. Tutorial Exercise Objectives
	IDK Walk-Through Objectives
	Your First Application Exercise Objectives
	Main Menu Exercise Objectives
	Add/Edit Resource Exercise Objectives
	Add/Edit Project Exercise Objectives
	Work With Projects Exercise Objectives

	2. The Jacada Studio Workflow Overview
	In the IDK:
	On the iSeries:
	In the IDK:

	3. The Jacada Studio Development Architecture
	In the IDK:

	4. The Shell Program
	Location of the Shell Program

	5. Other generated files relevant to the Shell Program
	Files related to the window
	Files related to tables
	For Example:
	Installing the Shell Program
	To install the Shell Program:

	Keeping Buffer Definitions in Sync
	Contents of the Shell Program
	Copybook PMENU$F is used by program PMENU
	Copybook PMENU$P is used by program PMENU.
	File PMENU$D defines the menu screen buffer for program PMENU.

	The Following Comments Describe the Shell Program Example Above (PMENU):
	Adding your Code to the Shell Program
	Controlling the Initial Contents of the Shell Program

	6. The Jacada Studio Runtime Architecture
	7. What You Can Expect
	Columns in the GUI Information Section
	Columns in the iSeries Files Section

	Walk-Through of the IDK Interface
	Objectives:
	1. Opening the Jacada Studio for iSeries IDK
	2. Opening the ITUTOR Application
	3. The Application Combobox
	4. The SubApplication Combobox
	The Subapplication List

	5. IDK Views
	Design View
	Test View

	6. IDK Menus
	7. The Standard Toolbar
	8. The KnowledgeBase
	Accessing the KnowledgeBase
	The KnowledgeBase Interface
	KnowledgeBase Definitions

	9. Apply Design Changes
	10. The Design View Palettes
	Usage of Design View Palettes
	Viewing the Design View Palettes
	Bring Palettes to Front
	The Control Editing Palette
	The Definitions Palette
	The Window Components Palette
	The Window Fields Palette
	Using Palettes to View The Relationship Between Window Components and Window Fields

	11. Setting Up Your Workspace
	Configuring the Grid
	Toggling the Grid on and Off

	12. Control Editing and Manipulation Options
	Modifying Component Properties
	Deleting Components
	Renaming Components

	Selecting Controls in the GUI
	Leading Control
	Selecting Controls Individually
	Selecting Controls by Group
	The Select Options in the Design Menu
	Clearing Selected Controls

	Control Editing and Manipulation Options
	Calling up the Arrange Menu with the Right Mouse Button
	Control Manipulation via Keyboard Arrows

	Your First Application
	Objectives:
	1. Window Design Specifications
	2. Open the Jacada Studio for iSeries IDK
	3. Create an Application
	4. Create a Subapplication
	5. Add GUI Components to the Window
	Add a GUI Component and Edit Control Properties
	What your Window Should Look Like
	Add an ‘Exit’ Button
	Save Subapplication

	6. Generate A Runtime
	Files Created By the Generate Runtime Process on the Development PC
	Libraries Objects and Members Created by the Generate Runtime Process

	7. Compile Transferred Files
	8. Ensure the Jacada Monitor is Active
	9. Run Application with a Java Client
	The Finished Product
	Close the Jacada Server

	10. Run Application with an XHTML Client
	The Finished Product
	Close the Jacada Server

	Create the Main Menu Window
	Objectives:
	1. Window Design Specifications
	2. Open the Jacada Studio for iSeries IDK
	3. Open the MYTUTOR Application
	4. Create the PMENU Subapplication
	Elements Added to the Window by the Tutorial_MenuLayout Window Layout
	Checking the Contents of the Window

	5. Add Representation to the Window
	Positioning the Menu Buttons
	Save Subapplication
	The Finished Product

	6. Generate Runtime and Transfer Files
	7. About Host Code
	8. Compile DDS and Program File on Host
	9. Ensure the Jacada Monitor is Active
	10. Run Application with a JAVA Client
	The Finished Product
	Close the Jacada Server

	11. Run Application with an XHTML Client

	How It Works: The Main Menu Window
	Look for the ActionPerformed Method Attached to the OnClick Event of the Menu Buttons
	Events
	Window Component Names

	Optional Exercises: The Main Menu Window
	1. Delete the Buttons that Were Inserted by the Tutorial_MenuOption Representation
	2. Drag a Simple Button Representation onto Window
	3. Set Button Component Name
	4. Set Button Style Properties
	5. Copy Paste Button
	Change Component Names and Image Associations

	6. Position Buttons in Center of Window
	7. Generate Runtime and Run Application

	Create the Add / Edit Resource Window
	Objectives:
	1. Window Design Specifications
	2. Create the PADDRE Subapplication
	Open the IDK and the MYTUTOR Application
	Create the PADDRE Subapplication
	Leveraging Common GUI Look Between Layouts
	Elements added to the Window by the Tutorial_MenuLayout Window Layout
	Checking the Contents of the Window

	3. The Window Header
	4. Add Fields to the Window
	Arrange the Position of the Added Representations
	Add Variable Representations to the Window

	5. The “Resource #” Representation
	6. The Add and Update Buttons
	The Add Button
	The Update Button
	Align the Buttons

	7. Error Handling
	8. Generate Runtime and Transfer Files
	9. About Host Code
	10. Compile DDS and Program File on Host
	11. Run Application
	Ensure the Jacada Monitor is Active
	Run your Application with a JAVA Client
	Navigate to the Add / Edit Resource Window
	The Finished Product
	Close the Jacada Server

	How It Works: The Add / Edit Resource Window
	The VariableMode Hidden Variable

	Create the Add / Edit Project Window
	Objectives:
	1. Window Design Specifications
	2. Create the PADDPR Subapplication
	3. The Add and Update Button
	4. Adding Fields to the Window
	Arrange the Position of the Added Representations

	5. Error Handling On The Host
	Add Variable Representations to the Window
	About Host Code Error Handling

	6. The “Project #” Representation
	7. Generate Runtime and Transfer Files
	8. Compile DDS and Program File on Host
	9. Run Application with a Java Client
	Ensure the Jacada Monitor is Active
	Run your Application with a JAVA Client
	Navigate to the Add / Edit Projects Window
	The Finished Product
	Close the Jacada Server

	10. Extend the HTML Code to Include Date Controls
	The Date Control Extension

	11. Run Application with an XHTML Client
	Navigate to the Add / Edit Projects Window
	The Finished Product
	Close the Jacada Server

	How It Works: The Add / Edit Project Window
	Error Handling On The Host
	Disabling the ‘Name’ Textbox in Edit Mode

	Create the Work with Projects Window
	Objectives:
	1. Window Design Specifications
	2. Create the PPROJ Subapplication
	The New Subapplication Wizard
	Elements added to the Window by the Tutorial_ LayoutforPPROJ Window Layout
	Checking the Contents of the Window

	3. Add the ‘Sort by’ Combobox to your Window
	4. Add a Table to your Window
	5. Add Representations to the Table
	Add a Field to the Table and Use the Show Filter to Find the Right Representation
	Add Remaining Representations to the Table
	Testing the Table’s Functionality
	Manipulation of Table Columns

	6. Create a Field in the KnowledgeBase
	7. Associate Representation with Field and Create a Short List
	Add FDTOTL to the Window
	What your Window Should Look Like

	8. Generate Runtime and Transfer Files
	Files Created By the Generate Runtime Process on the Development PC
	Libraries Objects and Members Created by the Generate Runtime Process

	9. Modify The RPG Program
	10. Compile DDS and Program File on Host
	11. Run Application with a Java Client
	Run your Application with a JAVA Client
	Navigate to the Work with Projects Window
	What your Window Should Look Like in Java
	Close the Jacada Server

	12. Run Application with an XHTML Client
	What your Window Should Look Like in HTML

	How It Works: The Work with Projects Window
	The ‘Submit’ Button
	Actions Performed on Table Records
	Table MenuOption Component in the Java Runtime
	Action Column in the XHTML Runtime
	Showing and Hiding the XHTML Action Column According to Runtime Platform

	Optional Exercises: Let’s Break it Down - PPROJ
	1. Add a Value to the ‘Sort by’ Combobox
	2. Associate Screen and Window Values
	View the Connection Between Screen and Window Values

	3. Generate a Runtime
	4. Create Fspec and Modify the RPG Program
	5. Compile Host Code and Run Application

